Spiegelung an einer Geraden < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen. Ich habe mal eine Frage. Und zwar geht es um die Spiegelung an einer Geraden im [mm] \IR^2.
[/mm]
Ich soll nun [mm] a_1_1,a_1_2,a_2_1,a_2_2 \in \IR [/mm] so bestimmen, dass die lineare Abbildung A eine SPiegelung an der von [mm] \vektor{v_1 \\ v_2} [/mm] erzeugten Geraden beschreibt.
[mm] v_1=-4
[/mm]
[mm] v_2=-3
[/mm]
Frage: Gibt es irgendwie einen besonderen Weg, wie man sowas berechnen kann. Ich habe da schon an das Standardskalarprodukt gedacht. Vielleicht kann ich das ja irgendiwe mit einbinden!
Ach ja. Es wird die lineare Abbildung A: [mm] \IR^2 \to \IR^2: \vektor{x_1 \\ x_2} \to \vektor{a_1_1x_1 + a_1_2x_2\\ a_2_1x_1 + a_2_2x_2} [/mm] betrachtet.
|
|
|
|
Hallo,
Deine Ansätze sind sehr mager. Eine Spiegelung ist doch wirklich im Bereich der Vorstellungskraft, ist Dir da nicht mehr eingefallen als "irgendwie das Skalarprodukt einzubinden"?
Ich sehe im Wesentlichen zwei Möglichkeiten.
A. Jede lineare Abbildung wird durch die Angabe ihrer Werte auf einer Basis eindeutig bestimmt.
[mm] (\vektor{1 \\ 0}, \vektor{0\\ 1}) [/mm] bilden eine Basis des [mm] \IR^2, [/mm] Du mußt nun also nur ausrechnen, worauf die beiden durch die Spiegelung abgebildet werden.
Hierfür ist jeweils die zu v senkrechte Gerade durch die beiden Punkte aufzustellen, der Abstand zw. Punkt und Spiegelachse zu ermitteln und dann entsprechend auf die andere Seite der Achse zu übertragen - Schulstoff. Mach' Dir 'ne Zeichnung zur Hilfe.
mit [mm] L(\vektor{1 \\ 0}) [/mm] und L( [mm] \vektor{0\\ 1}) [/mm] hast Du dann die Abbildung, unter Ausnutzung der Linearität kannst Du sie als L( [mm] \vektor{x\\ y})= \vektor{...\\ ...} [/mm] schreiben.
B. Du stellst die darstellende Matrix bzgl einer sehr gut zur Speigelung passenden Basis, also v und und einem dazu senkrechten Vektor auf und machst dann eine Basistransformation.
Gruß v. Angela
|
|
|
|