Spezielle Lösung einer DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:01 Do 14.02.2008 | Autor: | SirTech |
Aufgabe | Die "allgemeine Lösung" der Differentialgleichung x+yy' = 0, mit y(0)=2 sei
[mm] y^2 [/mm] = [mm] -x^2+2C [/mm] v [mm] x^2+y^2 [/mm] = 2C.
Dann sei die "spezielle Lösung" für y(0)=2 folgende:
y(0)=2 => 4=2C, d.h. C=2
|
Ich verstehe nicht, wie kommen die an y(0)=2 => 4=2C, welcher Schritt liegt dazwischen, wo muss ich 0 einsetzen und wo kommt da 4=2C raus - C=2 verstehe ich ja.
Damit ich nicht noch ein Thread starten muss noch eine kleine Frage am Rande.
Angenommen ich trenne die Variablen einer DGL und löse das Integral wobei y links und x rechts aufgeführt sei, wohin kommt dann die Konstante + C ?
Ist es egal ob sie links geschrieben wird oder rechts ? Ich nehme mal an, dass sich das nach irgendwas richtet, aber mir konnte keiner meiner Kollegen helfen.
Danke für Eure Zeit und Antworten!
Gruß -Pat
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo SirTech,
> Die "allgemeine Lösung" der Differentialgleichung x+yy' =
> 0, mit y(0)=2 sei
> [mm]y^2[/mm] = [mm]-x^2+2C[/mm] v [mm]x^2+y^2[/mm] = 2C.
>
> Dann sei die "spezielle Lösung" für y(0)=2 folgende:
> y(0)=2 => 4=2C, d.h. C=2
>
>
> Ich verstehe nicht, wie kommen die an y(0)=2 => 4=2C,
> welcher Schritt liegt dazwischen, wo muss ich 0 einsetzen
> und wo kommt da 4=2C raus - C=2 verstehe ich ja.
Um die Konstante C herauszubekommen, wird die Anfangsbedingung in die Lösung der Differentialgleichung eingesetzt:
[mm]y_{0}=2 \Rightarrow x_{0}=0[/mm]
Demnach ergibt sich folgende Gleichung:
[mm]x_{0}^{2}+y_{0}^{2}=2C \gdw 0^{2}+2^{2}=2^{2}=4=2C \ \Rightarrow C=2[/mm]
>
> Damit ich nicht noch ein Thread starten muss noch eine
> kleine Frage am Rande.
> Angenommen ich trenne die Variablen einer DGL und löse das
> Integral wobei y links und x rechts aufgeführt sei, wohin
> kommt dann die Konstante + C ?
Auf rechte Seite, also da wo die Terme mit x stehen.
> Ist es egal ob sie links geschrieben wird oder rechts ?
Nein. Das schreibt man immer zu den Termen mit x.
Aus dem Grund, weil man in der Regel eine Funktion [mm]y=f\left(x\right)[/mm] haben will.
> Ich nehme mal an, dass sich das nach irgendwas richtet,
> aber mir konnte keiner meiner Kollegen helfen.
>
> Danke für Eure Zeit und Antworten!
>
>
> Gruß -Pat
>
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:42 Do 14.02.2008 | Autor: | SirTech |
>Um die Konstante C herauszubekommen, wird die Anfangsbedingung in die Lösung der Differentialgleichung eingesetzt:
>[mm]y_{0}=2 \Rightarrow x_{0}=0[/mm]
>Demnach ergibt sich folgende Gleichung:
>[mm]x_{0}^{2}+y_{0}^{2}=2C \gdw 0^{2}+2^{2}=2^{2}=4=2C \ \Rightarrow C=2[/mm]
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
Man erkläre mich für blöd, aber ich verstehe es immer noch nicht. Wenn ich jetzt die Anfangsbedingung in die "allgemeine Lösung" einsetze, dann würde das wie aussehen ?
Ich komme nicht darauf, wie Du hier [mm]y_{0}=2 \Rightarrow x_{0}=0[/mm] das [mm] x_{0}=0 [/mm] - ist hier die allg. Lösung [mm]x^2+y^2[/mm] = 2C verwendet ohne die Konstante 2C zu beachten ? Wobei ich dann ja dort [mm] x^2=-y^2 [/mm] stehen hätte und dann irgendwie auch nicht auf das Ergebnis käme.
Hoffentlich kannst Du mir den Zwischenschritt noch kurz erläutern, aber jetzt schon einmal ein dickes Danke für die sehr schnelle und präzise Antwort. Bin vielleicht auch schon was lange am Schreibtisch.
Gruß -Pat
|
|
|
|
|
Hallo SirTech,
> >Um die Konstante C herauszubekommen, wird die
> Anfangsbedingung in die Lösung der Differentialgleichung
> eingesetzt:
>
> >[mm]y_{0}=2 \Rightarrow x_{0}=0[/mm]
>
> >Demnach ergibt sich folgende Gleichung:
>
> >[mm]x_{0}^{2}+y_{0}^{2}=2C \gdw 0^{2}+2^{2}=2^{2}=4=2C \ \Rightarrow C=2[/mm]
> ----------------------------------------------------------------------------------------------
>
> ----------------------------------------------------------------------------------------------
>
> Man erkläre mich für blöd, aber ich verstehe es immer noch
> nicht. Wenn ich jetzt die Anfangsbedingung in die
> "allgemeine Lösung" einsetze, dann würde das wie aussehen
> ?
>
> Ich komme nicht darauf, wie Du hier [mm]y_{0}=2 \Rightarrow x_{0}=0[/mm]
[mm]y\left ( 0 \right )=y\left(x_{0}\right)=y_{0}[/mm]
> das [mm]x_{0}=0[/mm] - ist hier die allg. Lösung [mm]x^2+y^2[/mm] = 2C
> verwendet ohne die Konstante 2C zu beachten ? Wobei ich
> dann ja dort [mm]x^2=-y^2[/mm] stehen hätte und dann irgendwie auch
> nicht auf das Ergebnis käme.
Ich habe die allgemeine Lösung dieser Differntialgleichung [mm]x^{2}+y^{2}=2C[/mm] herangezogen, um die Konstante C zu ermitteln.
Da ich nun die Konstante C ermittelt habe, habe ich eine spezielle Lösung dieser Differentialgleichung konstruiert.
>
> Hoffentlich kannst Du mir den Zwischenschritt noch kurz
> erläutern, aber jetzt schon einmal ein dickes Danke für die
> sehr schnelle und präzise Antwort. Bin vielleicht auch
> schon was lange am Schreibtisch.
>
>
> Gruß -Pat
>
>
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:33 Do 14.02.2008 | Autor: | SirTech |
Danke MathePower,
meine Schreibweise wäre also, wie folgt, richtig?
[mm] 2C=y^2+x^2
[/mm]
Nun die Anfangsbedingung "y(0)=2" in die allg. Lösung [mm] "2C=y^2+x^2"
[/mm]
[mm] y(x)^2+x^2=2C
[/mm]
[mm] y(0)^2+0^2=2C [/mm] <= da y(0)=2 sein soll folgt:
[mm] 2^2+0^2=2C
[/mm]
4 =2C
Ich brauchte das mal ganz ausführlich damit ich das Prinzip verstehe, ich muss mir also unterm Strich bei y immer y(x) denken ?! Das Problem war, ich habe die Abhängigkeit der Variablen untereinander nicht verstanden ... hoffe es jetzt richtig zu verstehen!?
Gruß und schönen Abend -Pat
|
|
|
|
|
Hallo SirTech,
> Danke MathePower,
>
> meine Schreibweise wäre also, wie folgt, richtig?
>
> [mm]2C=y^2+x^2[/mm]
Ja.
>
> Nun die Anfangsbedingung "y(0)=2" in die allg. Lösung
> [mm]"2C=y^2+x^2"[/mm]
>
> [mm]y(x)^2+x^2=2C[/mm]
> [mm]y(0)^2+0^2=2C[/mm] <= da y(0)=2 sein soll folgt:
>
> [mm]2^2+0^2=2C[/mm]
> 4 =2C
Richtig.
>
> Ich brauchte das mal ganz ausführlich damit ich das Prinzip
> verstehe, ich muss mir also unterm Strich bei y immer y(x)
> denken ?! Das Problem war, ich habe die Abhängigkeit der
> Variablen untereinander nicht verstanden ... hoffe es jetzt
> richtig zu verstehen!?
Meistens ist eine Funktion [mm]y=y\left(x\right)[/mm] gesucht.
Bei der Lösung einer stellt sich dann heraus, ob man diese Funktion wirklich angeben kann.
>
>
> Gruß und schönen Abend -Pat
Danke, gleichfalls.
Gruß
MathePower
|
|
|
|