Spektrum Adjungierte < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
mir ist eine Sache bzgl des Spektrums eines adjungierten Operators nicht ganz klar und frage deshalb mal nach.
Also für einen stetigen Operator A:X->X , wobei (X, [mm] \parallel. \parallel [/mm] ) ein Banachraum ist und seiner Adjungierten A*:X*->X* haben wir gesagt, dass das Spektrum von A= Spektrum von A* ist.
Auf einem Hilbertraum H ergibt sich für das Spektrum eines adjungierten Operators A* : Spektrum(A*)= [mm] \{ \overline{ \lambda } : \lambda \in Spektrum(A) : \} [/mm] . Also mir ist der Unterschied nicht ganz bewusst. Ein Hilbertraum ist ja ausgestattet mit einem Skalarprodukt, also einer Bi-bzw. Sesquilinearform und eine Norm wird ja nicht immer von einem Skalarprodukt induziert, hat das etwas damit zutun? Also woher kommt der Unterschied genau?Ich kenne noch den Beweis wie die Eigenwerte einer adjungierten Abb. aussehen für euklidische/unitäre Vektorräume aus der Linearen Algebra ^^, aber das ist ja hier nun eine allgemeinere Sache.
Wäre über Aufklärung dankbar.
Liebe Grüße
Habe noch ergänzt: Das Spektrum(A)=Spektrum(A*) im Banachraumfall gilt , folgt aus A invertierbar genau dann, wenn seine Adjungierte invertierbar. Aber es geht jetzt konkret um den Unterschied der sich ergibt, wenn wir einen Banachraum und spezieller einen Hilbertraum zu Grunde legen, der mir nicht ganz klar ist.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:57 Sa 25.08.2012 | Autor: | fred97 |
Schau mal hier:
http://de.wikipedia.org/wiki/Adjungierter_Operator
Ist X ein Hilbertraum und A:X [mm] \to [/mm] X ein lin. Operator, so kann man 2 (!) adjungierte Operatoren definieren, die Hilbertraumadjungierte, die ist def. auf X und geht nach X, und die Banachraumadjungierte, die ist auf X* def. und geht nach X*
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:38 Sa 25.08.2012 | Autor: | Schachtel5 |
achsoo okay vielen Dank! Heute komme ich beim Wiederholen der Vorlesung zu Hilberträumen, da werde ich mir das genauer anschauen. Danke=)!
|
|
|
|