matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSpaltenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Spaltenvektoren
Spaltenvektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spaltenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Sa 20.11.2010
Autor: Mandy_90

Aufgabe
Sei A [mm] \in \IQ^{3 \times 4} [/mm] die Matrix [mm] A=\pmat{ 1 & 0 & 3 & -2 \\ 0 & 1 & 1 & -1 \\ 1 & -4 & -1 & 2 }. [/mm]

1.Man bestimme durch Weglassen von Spalten von A, eine Matrix B [mm] \in \IQ^{3 \times k} [/mm] mit maximal möglicher Spaltenzahl k derart,dass die Spaltenvektoren von B linear unabhängig sind.

2.Man ergänze die Menge der Spaltenvektoren von B zu einer Basis von [mm] \in \IQ^{3} [/mm] mit Hilfe des Austauschsatzes von Steinitz und der Standardbasis von [mm] \in \IQ^{3}. [/mm]

Hallo,

Ich mache grad diese Aufgabe,bin mir aber unsicher ob ich bei 1. das richtige habe.
Ich hab zunächst die 1.Spalte weggelassen,die anderen drei waren aber linear abhängig,dann die 2. weggelassen,dann waren die restlichen drei auch linear abhängig.Und mit 3. und 4. Spalte das gleiche.

Also ich hab raus,dass 3 Spalten von A nicht linear unabhängig sind,d.h. es müssten zwei sein.
Aber wenn ich zwei anschaue,dann sind die 1. und 2., 1. und 3., 1. und 4., 2. und 3. ... und noch mehr linear unabhängig,dann hab ich ja ganz viele.
Welche Matrix soll ich denn dann nehmen und bei der b) zu einer Basis ergänzen?

Oder hab ich mich vertan und drei Spalten sind doch linear unabhängig?

lg

        
Bezug
Spaltenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Sa 20.11.2010
Autor: reverend

Hallo Mandy,
> Ich mache grad diese Aufgabe,bin mir aber unsicher ob ich
> bei 1. das richtige habe.
>  Ich hab zunächst die 1.Spalte weggelassen,die anderen
> drei waren aber linear abhängig,dann die 2.
> weggelassen,dann waren die restlichen drei auch linear
> abhängig.Und mit 3. und 4. Spalte das gleiche.

[ok]

> Also ich hab raus,dass 3 Spalten von A nicht linear
> unabhängig sind,d.h. es müssten zwei sein.
>  Aber wenn ich zwei anschaue,dann sind die 1. und 2., 1.
> und 3., 1. und 4., 2. und 3. ... und noch mehr linear
> unabhängig,dann hab ich ja ganz viele.

[ok] Stimmt auch. Da gibt es nicht "ganz viele", sondern 6 Möglichkeiten.

>  Welche Matrix soll ich denn dann nehmen und bei der b) zu
> einer Basis ergänzen?

Egal. Such Dir eine aus.

> Oder hab ich mich vertan und drei Spalten sind doch linear
> unabhängig?
>  
> lg

Grüße
reverend


Bezug
                
Bezug
Spaltenvektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:52 Sa 20.11.2010
Autor: Mandy_90


> >  Welche Matrix soll ich denn dann nehmen und bei der b) zu

> > einer Basis ergänzen?
>  
> Egal. Such Dir eine aus.
>  

Ok,dann nehme ich die 2. und 3. Spalte.Also hab ich [mm] B=\pmat{ 0 & 3 \\ 1 & 1 \\ -4 & -1 } [/mm] und soll die Menge der Spaltenvektoren von B zu einer Basis von [mm] \IQ^{3} [/mm] ergänzen mit Hilfe des Austauschsatzes von Steinitz und der Standardbasis von [mm] \IQ^{3}. [/mm]
Zunächst, wenn ich die Spaltenvektoren zu einer Basis von [mm] \IQ^{3} [/mm] ergänzen will,dann muss doch diese Basis 3 Vektoren haben,also noch einen Vektor dazu oder?
So, und die Standardbasis von [mm] \IQ^{3} [/mm] ist doch [mm] S=\{\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 1}\}. [/mm] Jetzt kommt der Austauschsatz von Steinitz,der besagt:
"Seien V ein endlich erzeugter k-Vektorraum, m,n [mm] \in \IN_{0}, X=\{x_{1},...,x_{n}\} [/mm] eine linear unabhängige Teilmenge von V, [mm] B=\{b_{1},b_{m}\} [/mm] eine Basis von V.Dann gibt es eine Teilmenge [mm] B'\subsetB [/mm] derart,dass B' [mm] \cap X=\emptyset [/mm] und X [mm] \cup [/mm] B' ist Basis von V."

So, in meinem Fall ist doch [mm] X=\{\vektor{0 \\ 1 \\ -4},\vektor{3 \\ 1 \\ -1}\} [/mm] die linear unabhängige Teilmenge und [mm] B=\{\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0},\vektor{0 \\ 0 \\ 1}\} [/mm] eine Basis.

Jetzt muss ich eine Teilmenge von B nehmen,also entweder zwei oder einen, aber hier muss ich doch nur einen nehmen oder?
Ist es egal welchen ich nehme,denn für alle drei Vektoren von B gilt:
B' [mm] \cap X=\emptyset [/mm] ?

Dann nehme ich z.B den Vektor [mm] \vektor{1 \\ 0 \\ 0} [/mm] und füge ihn zu X hinzu, dann wäre X [mm] \cup B'=\{\vektor{0 \\ 1 \\ -4},\vektor{3 \\ 1 \\ -1},\vektor{1 \\ 0 \\ 0}\} [/mm] eine Basis von [mm] \IQ^{3}. [/mm]

Ist das so richtig?

lg

Bezug
                        
Bezug
Spaltenvektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Di 23.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]