matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenSpalten und Zeilenanzahl best.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Spalten und Zeilenanzahl best.
Spalten und Zeilenanzahl best. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spalten und Zeilenanzahl best.: Idee?
Status: (Frage) beantwortet Status 
Datum: 18:31 Mi 12.12.2012
Autor: wiwawutz

Aufgabe
Bestimmen sie m und n.

Sooo, ich rechne gerade einige Übungsaufgaben durch und bin mal wieder auf ein Problem gestoßen.

Ich brauche nur einen kleinen Schubs, ..einen Ansatz.
Das ganze scheint mir ziemlich einfach, nur komme ich nicht zum Anfang.

Also, für [mm] k\in \IN, [/mm] A [mm] \in \IR^{k\times4},B \in \IR^{n\times4}, C\in \IR^{k\timesm} [/mm] , [mm] \overrightarrow{v} \in \IR^{4} [/mm] gelte
[mm] ((B\overrightarrow{v})(A\overrightarrow{v})^{T}C^{T}) \in \IR^{5\times4} [/mm] .

Und nun sind m und n gesucht. Wie muss ich anfangen?
Ich hab ja nun gar keine Werte gegeben, deshalb fehlt mir ein Anfang.

Danke schonmal, ich komm mir schon doof vor, ständig zu fragen.

        
Bezug
Spalten und Zeilenanzahl best.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Mi 12.12.2012
Autor: meili

Hallo,

> Bestimmen sie m und n.
>  Sooo, ich rechne gerade einige Übungsaufgaben durch und
> bin mal wieder auf ein Problem gestoßen.
>  
> Ich brauche nur einen kleinen Schubs, ..einen Ansatz.
>  Das ganze scheint mir ziemlich einfach, nur komme ich
> nicht zum Anfang.
>  
> Also, für [mm]k\in \IN,[/mm] A [mm]\in \IR^{k\times4},B \in \IR^{n\times4}, C\in \IR^{k\times m}[/mm]
> , [mm]\overrightarrow{v} \in \IR^{4}[/mm] gelte
> [mm]((B\overrightarrow{v})(A\overrightarrow{v})^{T}C^{T}) \in \IR^{5\times4}[/mm]
> .
>  
> Und nun sind m und n gesucht. Wie muss ich anfangen?
>  Ich hab ja nun gar keine Werte gegeben, deshalb fehlt mir
> ein Anfang.

Wie eine Matrix mit einem Vektor multipliziert wird, ist Dir klar?

Welche Bedingungen bezüglich Zeilen und Spalten müssen 2 Matrizen
erfüllen, die man miteinander multiplizieren kann?
Und welche Anzahl an Zeilen und Spalten hat dann das Ergebnis der
Multiplikation?

Was passiert mit Zeilen und Spalten beim Transponieren einer Matrix?

>  
> Danke schonmal, ich komm mir schon doof vor, ständig zu
> fragen.  

Gruß
meili

Bezug
                
Bezug
Spalten und Zeilenanzahl best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Do 13.12.2012
Autor: wiwawutz

Ja, wie die beiden multipliziert wird, weiß ich.

Die Bedingungen die erfüllt werden müssen:
Die Spaltenanzahl muss der Zeilenanzahl der zweiten Matrix entsprechen.
So meine ich es mir behalten zu haben..

Und welche Zeilen und Spaltenanzahl das Ergebnis hat, dass soll ich ja rausfinden, oder nicht? Das kann ich ja noch nicht wissen.

Beim Transponieren einer Matrix, werden Zeilen und Spalten vertauscht.
Ich habe mir dazu gedacht, da da nun zwei mal transponiert wird, dass sich das erste ja wieder umdreht, also wieder die Anfangsmatrix ist..

Oder funktioniert das da nicht, weil nochmal mit einer Matrix C multipliziert wird?

Danke schonmal!

Bezug
                        
Bezug
Spalten und Zeilenanzahl best.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Do 13.12.2012
Autor: angela.h.b.

Hallo,

> Die Bedingungen die erfüllt werden müssen:
>  Die Spaltenanzahl muss der Zeilenanzahl der zweiten Matrix
> entsprechen.

Ja.

Und es gilt: [mm] a\times [/mm] b-Matrix mal [mm] b\times [/mm] c-Matrix = [mm] a\times [/mm] c-Matrix.


> Und welche Zeilen und Spaltenanzahl das Ergebnis hat, dass
> soll ich ja rausfinden, oder nicht? Das kann ich ja noch
> nicht wissen.

Du mußt das rausfinden und dann mit der Forderung, daß es eine [mm] 5\times [/mm] 4-Matrix sein soll, vergleichen.

>  
> Beim Transponieren einer Matrix, werden Zeilen und Spalten
> vertauscht.

Ja. Also auch Anzahl der Zeilen und Anzahl der Spalten.

>  Ich habe mir dazu gedacht, da da nun zwei mal transponiert
> wird,

Aber doch nicht dieselbe Matrix!
Es ist [mm] (M^{T})^{T}=M, [/mm]
aber [mm] M^{T}N^{T} [/mm] wird  i.a. nicht =MN sein.

---

Wir haben
für $ [mm] k,m,n\in \IN, [/mm] $ A $ [mm] \in \IR^{k\times4},B \in \IR^{n\times4}, C\in \IR^{k\times m} [/mm] $ , $ [mm] \overrightarrow{v} \in \IR^{4} [/mm] $.

Nun wird gesagt, daß das Produkt
[mm] (B\overrightarrow{v})(A\overrightarrow{v})^{T}C^{T} [/mm] eine [mm] 5\times [/mm] 4 Matrix ist.

Schreib doch jetzt mal einzeln die Formate der Matrizen auf

[mm] B\overrightarrow{v}: n\times [/mm] 4-Matrix mutipliziert mit [mm] 4\times 1-Matrix=n\times [/mm] 1 Matrix
[mm] A\overrightarrow{v}:... [/mm]
[mm] (A\overrightarrow{v})^{T}:... [/mm]
[mm] B\overrightarrow{v}(A\overrightarrow{v})^{T}:... [/mm]
C:...
[mm] C^{T}: [/mm]
[mm] (B\overrightarrow{v}(A\overrightarrow{v})^{T})C^{T}:... [/mm]

LG Angela



Bezug
                                
Bezug
Spalten und Zeilenanzahl best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 So 16.12.2012
Autor: wiwawutz

Soo, ich hab das jetzt mal alles ausführlich aufgeschrieben und komme auf das Ergebnis m x n.

Das bedeutet doch, da gilt 5 x 4 das m=5 und n=4 ist wie es in der Aufgabe steht, richtig?

Bezug
                                        
Bezug
Spalten und Zeilenanzahl best.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 So 16.12.2012
Autor: angela.h.b.


> Soo, ich hab das jetzt mal alles ausführlich
> aufgeschrieben und komme auf das Ergebnis m x n.
>  
> Das bedeutet doch, da gilt 5 x 4 das m=5 und n=4 ist wie es
> in der Aufgabe steht, richtig?  

Hallo,

ja, genau.

LG Angela


Bezug
        
Bezug
Spalten und Zeilenanzahl best.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Do 13.12.2012
Autor: angela.h.b.

Hallo,

was ich vorhin vergaß:

Deine Überschrift paßt nicht.
Der Rang einer Matrix ist die Anzahl linear unabhängiger Spalten bzw. Zeilen.
Danach fragt Deine Aufgabe nicht.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]