matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSonderfall Steigung v. Parabel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Sonderfall Steigung v. Parabel
Sonderfall Steigung v. Parabel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sonderfall Steigung v. Parabel: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 01:35 Fr 18.03.2005
Autor: Eddy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Achtung: Ich habe das Problem bereits selber gelöst

Achtung: Das Problem ist Teil einer Facharbeit über das Kurvenintegral.

Ich habe versucht eine allgemeine Funktion für ein stetig differenzierbares Intervall [a,b] zu finden, die die Länge von n Sekanten beschreibt. Quasi f a,b (n), wobei a und b Parameter sind.
Es hakt jedoch an einigen Stellen, weil ich entsprechende Teile gar nicht aus der Formel extrahieren kann um 1²...2² in ein Summenzeichen umzuformen.. Die Formel endet bei mir in der Art
[mm] \Wurzel{ [irgendwas * (2² - 1²) + 4/n (2)]² + 1 } [/mm]
+ [mm] \Wurzel{ [irgendwas * (3² - 2²) + 4/n (3)]² + 1 } [/mm] + ...
+ [mm] \Wurzel{ [irgendwas * (n² - (n-1)²) + 4/n (n)]² + 1 } [/mm]

Oder so ähnlich..

Mein Mathelehrer hat mir nun aufgetragen einen entsprechenden Teil

ms = [mm] (y_{2} [/mm] - [mm] y_{1}) [/mm] / [mm] (x_{2} [/mm] - [mm] x_{1}) [/mm]

umzuschreiben in

mt = f'( [mm] (x_{1} [/mm] + [mm] x_{2}) [/mm] / 2),

aber ich finde keine Lösung.
Er meinte das ließe sich bei der Parabel beweisen. Zu tun muss das haben mit dem Mittelwertsatz der Differentialrechnung (Man denkt sich ja quasi, dass es in dem Intervall [x1,x2] eine Tangente mit der Steigung mt gibt, die die gleiche Steigung ms hat, wie die Sekante durch x1 und x2). Soweit hab ich das verstanden.
Und für mich ist es auch logisch, dass diese Tangente genau zwischen den Punkten liegt ((x1+x2)/2), weil die Krümmung der Kurve ja konstant ist.
Ich weiß zwar nicht ob man das so nennen kann, was ich meine ist halt, wenn f(x) = x² ist, dann ist f''(x) = 2 = const.

Irgendwas muss es ja damit auf sich haben.. Mathematisch macht das aber wohl nicht so viel Sinn?? :-/ Ein gedanklicher Anstoß wäre ganz nett...

Wäre gut, wenn mir jemand grade mal helfen könnte, denn der Beweis ist eigentlich nur eine Hilfe in einer komplexeren Umformung in Zusammenhang mit dem Linienintegral, welches mit einer Hand voll Sekanten annäherungsweise errechnet werden soll :(
Muss ich mich eventuell näher mit dem Begriff Krümmungsmaß beschäftigen um den Beweis zu führen?

Anmerkung: Heute gelernt: Die Krümmung ist 1 / f''(x), und im Falle der Parabel konstant 1/2, sodass der Gedankengang korrekt wäre..

Mit freundlichen Grüßen, Eduard


Lösung:


Nach dem Mittelwertsatz der Differentialrechnung gibt es eine Tangente im Intervall [a,b], die die selbe Steigung mt hat, wie die Sekante durch f(a) und f(b), deren Steigung ms sei.

ms = [mm] (y_{b} [/mm] - [mm] y_{a}) [/mm] / [mm] (x_{b}-x_{a}) [/mm]
mt = f'(x) = 2*x

Setzen wir nun speziell eine einfache Parabel f(x) = x² ein, so ergibt sich, wenn wir herausfinden wollen für welches x dies gelten soll:

ms = mt
<=>  (b² - a²) / (b-a) = 2*x
Ergänzen: (b²-a²) = (b+a)(b-a) -> 3. binomische Formel
<=> (b+a)*(b-a)/(b-a) = 2*x
(b-a) kürzt sich weg
<=> b+a = 2*x  | /2
<=> (b+a)/2 = x

Quod erat demonstrandum.


Selbst für die Allgemeinform der Parabel lässt sich dies beweisen:

f(x) = ax² + bx + c  => f'(x) = 2*a*x + b
Intervall [i,k]

=> ( (ak²+bk+c)-(ai²+bi+c) ) / (k-i)  =  2*a*x + b
c kürzt sich weg
<=> (ak²+bk-ai²-bi) / (k-i) = 2*a*x + b
Ausklammern
<=> ( a(k²-i²) + b(k-i) ) / (k-i) = 2*a*x + b
Ergänzen mit 3. binomischer Formel
<=> ( a*(k+i)*(k-i) + b*(k-i) ) / (k-i) = 2*a*x + b
(k-i) kürzt sich weg
<=> a*(k+i)+b = 2*a*x + b
'- b' und danach '/2a'
<=> (k+i)/2 = x

Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]