matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSobolev-Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Sobolev-Räume
Sobolev-Räume < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sobolev-Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Fr 04.03.2011
Autor: physicus

Hallo zusammen

Ich habe eine Frage zur folgender Inklusion:

Sei $\ U [mm] \subset\subset \IR^n [/mm] $ offen. Dann soll folgendes gelten:

[mm] W^{1,q}(U) \subset W^{1,p}(U),1 \le p \le q \le \infty [/mm]

Ich habe den Tipp, dass man das mittels Hölder zeigen soll.

Sei $\ u [mm] \in W^{1,q} [/mm] $ dann ist zu zeigen. : $\ u [mm] \in L^p(U),\bruch{\partial u}{\partial x_i} \in L^p(U)$. [/mm] Wenn ich das erste zeigen kann, dann geht das andere für die schwache Ableitung ja gleich. Aber wie zeig ich das erste mittels Hölder? Zu zeigen ist ja, dass das Integral von $\ u $ endlich ist.
Ich danke euch für die Erklärung!

Gruss

physicus

        
Bezug
Sobolev-Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Sa 05.03.2011
Autor: emil11

Hallo physicus,

Was du beweisen willst und kannst ist, dass [mm] $L^p$-Räume [/mm] von endlichen Maßräumen (beispielsweise relativ kompakte Teilmengen des [mm] $^\IR^n$) [/mm] diese Inklusion erfüllen. Dazu musst du tatsächlich lediglich mit der Hölder-Ungleichung "herumspielen", es gilt also, die richtigen p, q zu finden (p+q=pq), dann wirst du die p-Norm von $u$ bzw. $Du$ gegen die q-Norm mal eine Potenz von [mm] $\lambda(U)$ [/mm] abschätzen können.

Mfg emil

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]