matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenSkizzieren komplexer Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Skizzieren komplexer Zahlen
Skizzieren komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren komplexer Zahlen: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 19:51 Do 15.11.2012
Autor: Barbarossa

ich habe meine Menge für [mm] |z-z1|\not=|z-z2| [/mm] mit z1=i und z2=2 ausgerechnet und bin bei folgender Gleichung gelandet: 4x-2y=3. Ist das ein Kreis mit dem Mittelpunkt (4/2) und dem Radius 3 ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skizzieren komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Do 15.11.2012
Autor: rainerS

Hallo!

> ich habe meine Menge für [mm]|z-z1|\not=|z-z2|[/mm] mit z1=i und
> z2=2 ausgerechnet und bin bei folgender Gleichung gelandet:
> 4x-2y=3.

Das kommt heraus, wenn du [mm]|z-z_1|=|z-z_2|[/mm] auflöst. Hier geht es aber um [mm] $\not=$ [/mm]

> Ist das ein Kreis mit dem Mittelpunkt (4/2) und
> dem Radius 3 ?

Nein, das ist eine Gerade mit Steigung 2, die die y-Achse bei $y=-3/2 $ schneidet.

Nun musst du noch berücksichtigen, dass es um die Punkte geht, die nicht auf dieser Gerade liegen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Skizzieren komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Do 15.11.2012
Autor: Barbarossa

Hallo,
vielen Dank für die schnelle Hilfe. Nur hätte ich eigtl mit einem Kreis gerechnet, der meine Wertemenge kennzeichnet. Verstehe ich es richtig, dass es aber alle Werte sind , die nicht auf y=-1.5+2x liegen ? Und was mache ich mit dem [mm] \not= [/mm] Zeichen?

Bezug
                        
Bezug
Skizzieren komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Do 15.11.2012
Autor: Steffi21

Hallo, du hast ja die Gerade 4a-2b=3 erhalten, setzt du Zahlenpaare ein, die auf der Geraden liegen, so sind die Beträge GLEICH, probiere es mal aus, z.B.:

a=1 und b=0,5
a=2 und b=2,5
a=3 und b=4,5

u.s.w.

du kannst also alle Zahlenpaare einsetzen, die NICHT auf der Geraden liegen, z.B. a=1 und b=1, dann sind die Beträge ungleich

Steffi


Bezug
                        
Bezug
Skizzieren komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Do 15.11.2012
Autor: rainerS

Hallo!

>  vielen Dank für die schnelle Hilfe. Nur hätte ich eigtl
> mit einem Kreis gerechnet, der meine Wertemenge
> kennzeichnet.

Naja, da stimmt deine geometrische Anschauung nicht ganz. Sieh es so:

[mm]|z-z_1| = |z-z_2|[/mm]

bezeichnet diejenigen Punkte z in der Zahlenebene, für die der Abstand von [mm] $z_1$ [/mm] genauso groß ist wie der Abstand von [mm] $z_2$. [/mm]  Greifen wir mal einen festen Abstand r heraus, also

[mm]|z-z_1| = r=|z-z_2|[/mm] ,

so bedeutet das, dass die Schnittpunkte der zwei Kreise um [mm] $z_1$ [/mm] bzw. [mm] $z_2$, [/mm] jeweils mit Radius r . Solange [mm] $2r>|z_1-z_2|$ [/mm] ist, sind das zwei Schnittpunkte. (Wenn [mm] $2r=|z_1-z_2|$ [/mm] ist, dann berühren sich die Kreise nur in einem Punkt, und für [mm] $2r=|z_1-z_2|$ [/mm] sind die Kreise so klein, dass sie sich nicht schneiden.)

Mal dir das einfach mal auf und lege durch die zwei Schnittpunkte eine Gerade.

Jetzt malst du zwei Kreise mit anderem Radius; wo liegen nun die Schnittpunkte?

  Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]