matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSkalarprodukt und Metrik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Skalarprodukt und Metrik
Skalarprodukt und Metrik < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt und Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mo 29.06.2009
Autor: Jun-Zhe

Aufgabe
Sei [mm] K\subseteq \IR^{n} [/mm] konvex und [mm] x\in \IR^{n}. [/mm] Dann sind für [mm]y \in K[/mm] folgende Aussagen äquivalent:
(a) [mm] d(x,y) = d(x,K) := inf_{y \in K}||x-y||_{2}[/mm]
(b) [mm] \forall w \in K:\ \le 0[/mm]

Hi,
ich komme erstmal zur Hinrichtung also [mm] "\Rightarrow". [/mm]
Sei [mm]w \in K[/mm].
Betrachte:
[mm] \begin{matrix} &=& \\ \ & =& + \\ \ & =& d(x,y)^2 - \\ \ & =& d(x,K)^2 - \\ \ &=& (inf_{y \in K}||x-y||_{2}) ^2 - \end{matrix} [/mm]

Jetzt weiß ich nicht genau wie ich argumentieren soll, dass [mm] \ge (inf_{y \in K}||x-y||_{2}) ^2[/mm] ist. Da w auch aus K ist wäre es doch einleuchtend, dass das dann größer als das Infimum ist, oder?

Zur Rückrichtung habe ich leider noch gar keine Idee, wäre nett, wenn ihr mir da auf die Sprünge helfen könntet. Man muss bestimmt die Konvexität von K ausnutzen, aber bin noch nicht darauf gekommen wie genau.

        
Bezug
Skalarprodukt und Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Di 30.06.2009
Autor: SEcki


> Jetzt weiß ich nicht genau wie ich argumentieren soll,
> dass [mm] \ge (inf_{y \in K}||x-y||_{2}) ^2[/mm] ist. Da w
> auch aus K ist wäre es doch einleuchtend, dass das dann
> größer als das Infimum ist, oder?

Hm, ich komme mit der Rechnung auch nicht weiter - aber mach mal folgenden Ansatz: Nehme an, es gäbe ein w mit [m]>0[/m]. Setze dann mal [m]^2:=d(t)[/m] an, leite dies ab. Du erhälst, dass das Minimum der Funktion nicht bei einem [m]0

> Zur Rückrichtung habe ich leider noch gar keine Idee,
> wäre nett, wenn ihr mir da auf die Sprünge helfen
> könntet. Man muss bestimmt die Konvexität von K
> ausnutzen, aber bin noch nicht darauf gekommen wie genau.

Hierfür braucht man die Konvexität überhaupt nicht. Setze einfach [m]^2=^2[/m] an und rechne dies aus, dann verwende die Vorraussetzung um den Ausdruck nach unten abzuschätzen.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]