matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSkalarprodukt u Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt u Norm
Skalarprodukt u Norm < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt u Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mo 13.08.2007
Autor: Wehm

Aufgabe
Es sei [mm] $(v_1,...,v_n) [/mm] $ ein Orthonormalsystem in einem euklidischen/unitären Vektorraum. Beweisen Sie für $v [mm] \in [/mm] V$
[mm] $||v||^2 [/mm]  = [mm] \sum^n_{i=1} ||^2 [/mm] + [mm] ||v-\sum^n_{i=1} v_i||^2$ [/mm]

Hoi.
Ich hab hier wieder einmal die Lösung die wieder mal Fragen aufwirft.

$ || v - [mm] \sum_i v_i||^2$ [/mm]

$ =  [mm] v_i [/mm] , v- [mm] \sum_i v_i>$ [/mm]


$= <v,v> - <v, [mm] \sum <\overline{v , v_i} [/mm] > - < [mm] \sum [/mm] < v, [mm] v_i>v_i [/mm] , v>
+ < [mm] \sum_i [/mm] < [mm] v,v_i>v_i,\sumv_j [/mm] >$


[mm] $=||v||^2 [/mm] - [mm] \sum [/mm] < [mm] \overline{v , v_i}> $ [/mm]

$= [mm] ||v||^2 [/mm] - [mm] ||v||^2 [/mm] = 0 $

Ich akzeptiere noch daß da 0 rauskommt. Ich sehe den Zusammenhang aber überhaupt nicht für [mm] \sum^n_{i=1} ||^2 [/mm] + [mm] ||v-\sum^n_{i=1} v_i||^2 [/mm] . Die Umformungen finde ich nachvollziehbar aber mein Problem is daß ich überhaupt nicht sehe, dass die Umformungen einen Sinn haben.

Gruß,
Wehm



        
Bezug
Skalarprodukt u Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mo 13.08.2007
Autor: Somebody


> Es sei [mm](v_1,...,v_n)[/mm] ein Orthonormalsystem in einem
> euklidischen/unitären Vektorraum. Beweisen Sie für [mm]v \in V[/mm]
>  
> [mm]||v||^2 = \sum^n_{i=1} ||^2 + ||v-\sum^n_{i=1} v_i||^2[/mm]
>  
> Hoi.
>  Ich hab hier wieder einmal die Lösung die wieder mal
> Fragen aufwirft.
>  
> [mm]|| v - \sum_i v_i||^2[/mm]
>  
> [mm]= v_i , v- \sum_i v_i>[/mm]
>  
>
> $= <v,v> - <v, [mm]\sum <\overline{v , v_i}[/mm] > - < [mm]\sum[/mm] < v,
> [mm]v_i>v_i[/mm] , v>
> + < [mm]\sum_i[/mm] < [mm]v,v_i>v_i,\sumv_j[/mm] >$
>  
>
> [mm]=||v||^2 - \sum < \overline{v , v_i}> [/mm]
>  
> [mm]= ||v||^2 - ||v||^2 = 0[/mm]
>  
> Ich akzeptiere noch daß da 0 rauskommt. Ich sehe den
> Zusammenhang aber überhaupt nicht für [mm]\sum^n_{i=1} ||^2[/mm]
> + [mm]||v-\sum^n_{i=1} v_i||^2[/mm] . Die Umformungen finde
> ich nachvollziehbar aber mein Problem is daß ich überhaupt
> nicht sehe, dass die Umformungen einen Sinn haben.

Grundlegend ist doch, dass für zueinander orthogonale Vektoren, sagen wir $u$ und $v$, gilt: [mm] $\parallel u+v\parallel^2 [/mm] = [mm] \parallel u\parallel^2+\parallel v\parallel^2$ [/mm] ("Pythagoras").

Wenn man also davon ausgeht, dass ja trivialerweise gilt:
[mm]\parallel v\parallel^2 = \left|\left|\sum_{i=1}^nv_i +\Big(v - \sum_{i=1}^n v_i\Big)\right|\right|^2[/mm]

und dass zudem
[mm]\sum_{i=1}^n v_i \perp \Big(v - \sum_{i=1}^n v_i\Big)[/mm]

Dann hast Du nach Anwendung von "Pythagoras" in etwa was behauptet wird, sofern Du zusätzlich berücksichtigst, dass die [mm] $v_i$ [/mm] ein Orthonormalsystem bilden, dass also insbesondere [mm] $\parallel v_i \parallel^2 [/mm] = [mm] ||^2$ [/mm] ist, für alle [mm] $i=1\ldots [/mm] n$, und für [mm] $i\neq [/mm] k$ gilt: [mm] $v_i\perp v_k$ [/mm] (ergo: nochmals $n$-malige Anwendung von "Pythagoras").

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]