matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeSkalarprodukt, Vektorraum, Nor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Skalarprodukt, Vektorraum, Nor
Skalarprodukt, Vektorraum, Nor < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt, Vektorraum, Nor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 16.06.2009
Autor: Mirage.Mirror

Aufgabe
[Dateianhang nicht öffentlich]

Zu a)
Meine Idee wäre mit der Dreiecksungleichung zu arbeiten und darauf hinzuarbeiten, dass am Ende herauskommt
4|x|², was ja dann mit der Norm zum Ergebnis führt.

Kann ich das so machen oder muss ein anderer Ansatz her?

Zu b)
i) Hier bin ich mir nicht ganz sicher, inweiweit man das Skalarprodukt ausdrücken soll. Muss ich da "einfach" die Normen einsetzen und so umformen, dass das Skalarprodukt herauskommt? Ich bin mir im komplexen immer unsicher, was genau gemacht werden muss und worauf ich zu achten habe

ii) Auch hier wieder Dreiecksungleichung? Ganz naiv hätte ich das sozusagen per Hand ausgerechnet mit der binomischen Formel, aber das wird wohl zu trivial, oder?


Vielen Dank im Voraus

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Skalarprodukt, Vektorraum, Nor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Di 16.06.2009
Autor: fred97


> [Dateianhang nicht öffentlich]
>  Zu a)
>  Meine Idee wäre mit der Dreiecksungleichung zu arbeiten
> und darauf hinzuarbeiten, dass am Ende herauskommt
>  4|x|², was ja dann mit der Norm zum Ergebnis führt.
>  
> Kann ich das so machen

Nein


> oder muss ein anderer Ansatz her?


Ja, stures Rechnen ( beachte hierbei: [mm] $|z|^2 [/mm] = <z,z>$  für jedes z [mm] \in [/mm] V)

[mm] $|x+y|^2-|x-y|^2= [/mm] <x+y,x+y>-<x-y,x-y> = <x,x>+2<x,y>+<y,y>-(<x,x>-2<x,y>+<y,y>) = 4<x,y>$

>  
> Zu b)
>  i) Hier bin ich mir nicht ganz sicher, inweiweit man das
> Skalarprodukt ausdrücken soll. Muss ich da "einfach" die
> Normen einsetzen und so umformen, dass das Skalarprodukt
> herauskommt? Ich bin mir im komplexen immer unsicher, was
> genau gemacht werden muss und worauf ich zu achten habe
>  

Genauso stur nachrechnen, dass gilt


$4<x,y>=(|x+y|² - |x-y|²)+ i(|x+iy|² - |x-iy|²)$



> ii) Auch hier wieder Dreiecksungleichung? Ganz naiv hätte
> ich das sozusagen per Hand ausgerechnet mit der binomischen
> Formel, aber das wird wohl zu trivial, oder?


Wieder , wie oben stur nachrechnen


FRED


>  
>
> Vielen Dank im Voraus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]