matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelSkalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Längen, Abstände, Winkel" - Skalarprodukt
Skalarprodukt < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Do 03.10.2013
Autor: bennoman

Aufgabe
Bestimmen Sie zu dem Vektor v alle Vektoren, die zu v orthogonal sind.
v=(a/b/1)

Hallo,
ich bezeichne die Vektoren als a=(x/y/z)
Dann verwende ich das Orthogonalitätskriterium:
0=ax+by+z
Jetzt weiß ich jedoch nicht weiter. Ich muss ja irgendwie versuchen hinterher nur noch a und b in der Gleichung zu haben.
Gruß Benno

        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Do 03.10.2013
Autor: M.Rex


> Bestimmen Sie zu dem Vektor v alle Vektoren, die zu v
> orthogonal sind.
> v=(a/b/1)
> Hallo,
> ich bezeichne die Vektoren als a=(x/y/z)
> Dann verwende ich das Orthogonalitätskriterium:
> 0=ax+by+z

Es reicht anzugeben, dass alle Vektoren, dessen Komponenten x, y und z diese Gleichung erfüllen, zu [mm] \vec{v} [/mm] senkrecht stehen.

Wenn du unbedingt rechnen willst, führe zwei Parameter ein, z.B. [mm] y=\lambda [/mm] und [mm] z=\mu. [/mm]
Dann bekommst du [mm] x=\frac{-\mu-b\lambda}{a} [/mm] - sofern [mm] a\ne0 [/mm]

Damit dannn die "Vektormenge"

[mm] \vec{v}=\vektor{\frac{-\mu-b\lambda}{a}\\\lambda\\\mu} [/mm]




> Jetzt weiß ich jedoch nicht weiter. Ich muss ja irgendwie
> versuchen hinterher nur noch a und b in der Gleichung zu
> haben.
> Gruß Benno

Versuche mal, unseren Formeleditor zu verwenden, dann ist deine Eingabe leichter zu lesen. Das erleichtert das Korrigieren ungemein.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]