matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSkalarfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Skalarfeld
Skalarfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Fr 29.06.2012
Autor: testtest

Aufgabe
Durch die [mm] f(x)=c(x^2+y^2) [/mm] , c>0 ist eine Fläche (bzw. ebens Skalarfeld) gegeben. Bestimmen Sie die Konstante c so, dass die maximale steigeung der Funktionn an der Stelle (x,y) = (2,1) den Neigungswinkeö phi= pi/4 aufweist.

In welche Richtung geht  dieser?

Ich weiß nicht genau was zu tun ist.

die Lösung ist [mm] \bruch{\wurzel{5}}{10} [/mm]

Ich habe schon den grad f bestimmt.

grad f = [mm] \vektor{4c \\ 2x } [/mm]

Nun ist es ja auch so, dass grad f * [mm] \vec{a}_{a} [/mm] in die Richtung des stärksten Anstieges zeigt.

Aber ich weis nicht wie ich das mit phi verwende, bzw. die Steiegung ist ja der tan(phi) also = 1

Um hilfe im Ansatz wäre ich sehr dankbar.

        
Bezug
Skalarfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Fr 29.06.2012
Autor: Diophant

Hallo,

deine Funktion ist vom Typ f(x,y) und f(x) ein Tippfehler?

dein Gradient ist schonmal falsch. Man sieht doch der Funktion f unmittelbar an, dass die Komponenten des Gradienten gleich sein müssen.

Um in Abhängigkeit von c den Neigungswinkel auszudrücken, benötigst du jetzt noch die Richtungsableitung im Punkt (2,1), sowie eben das Wissen, dass man unter einer Steigung m den Tangens des Schnittwinkels mit der x-Achse bzw. hier: kit der xy-Ebene meint.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]