matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Sinussatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Sinussatz
Sinussatz < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinussatz: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:17 Fr 08.06.2012
Autor: martinn

Guten Abend,
brauche von euch einen Tipp. Die Aufgabe ist:

Vom Dach eines 100 m hohen Hochhauses sieht man die beiden
Uferränder eines Flusses unter den Tiefenwinkel [mm] \alpha [/mm] 5,6 Grad und [mm] \beta [/mm] 10,8 Grad . Wie breit ist der Fluss an dieser Stelle?

Lg
Martin

        
Bezug
Sinussatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Fr 08.06.2012
Autor: wieschoo


> Guten Abend,
>  brauche von euch einen Tipp. Die Aufgabe ist:
>  
> Vom Dach eines 100 m hohen Hochhauses sieht man die beiden
>  Uferränder eines Flusses unter den Tiefenwinkel [mm]\alpha[/mm]
> 5,6 Grad und [mm]\beta[/mm] 10,8 Grad . Wie breit ist der Fluss an
> dieser Stelle?
>  
> Lg
>  Martin

Hi,

betrachte folgende Abbildung:
[Dateianhang nicht öffentlich]

Der Sinussatz sagt
[mm] $$\frac{{\color{Orange}D}}{\sin(\red{\alpha})}=\frac{\red{A}}{\sin(\delta)}=\frac{C}{\gamma}$$ [/mm]

Die Innenwinkelsumme kennst du auch. Wenn man jetzt davon ausgeht, dass es sich nicht um den schiefen Turm von Pisa handelt, kennst du [mm] $\delta$. [/mm]

Und für das andere Dreick mit den Seiten [mm] $\green{B},C,({\color{Orange}D}+\blue{E})$ [/mm] analog.
Mittels [mm] $$({\color{Orange}D}+\blue{E})\quad -\quad {\color{Orange}D} [/mm] = [mm] \blue{E}$$ [/mm] erhälst du die gesuchte Länge.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Sinussatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:12 Fr 08.06.2012
Autor: martinn

Das reicht völlig aus.
Vielen Dank.Das Bild war sehr anschaulich.
Lg
Martin> > Guten Abend,

>  >  brauche von euch einen Tipp. Die Aufgabe ist:
>  >  
> > Vom Dach eines 100 m hohen Hochhauses sieht man die beiden
>  >  Uferränder eines Flusses unter den Tiefenwinkel [mm]\alpha[/mm]
> > 5,6 Grad und [mm]\beta[/mm] 10,8 Grad . Wie breit ist der Fluss an
> > dieser Stelle?
>  >  
> > Lg
>  >  Martin
>
> Hi,
>  
> betrachte folgende Abbildung:
>  [Dateianhang nicht öffentlich]
>  
> Der Sinussatz sagt
>  
> [mm]\frac{{\color{Orange}D}}{\sin(\red{\alpha})}=\frac{\red{A}}{\sin(\delta)}=\frac{C}{\gamma}[/mm]
>  
> Die Innenwinkelsumme kennst du auch. Wenn man jetzt davon
> ausgeht, dass es sich nicht um den schiefen Turm von Pisa
> handelt, kennst du [mm]\delta[/mm].
>  
> Und für das andere Dreick mit den Seiten
> [mm]\green{B},C,({\color{Orange}D}+\blue{E})[/mm] analog.
>  Mittels [mm]({\color{Orange}D}+\blue{E})\quad -\quad {\color{Orange}D} = \blue{E}[/mm]
> erhälst du die gesuchte Länge.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]