matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSingularitäten und Residuen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Singularitäten und Residuen
Singularitäten und Residuen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularitäten und Residuen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Di 13.01.2009
Autor: daTidus

Aufgabe
Bestimme die Art der isolierten Singularität und das jeweilige Residuum der folgenden Funktionen:

a) z*sin(1/z)
b) [mm] cos(\pi*z)/(z-1)^3 [/mm]

Also zu a) habe ich folgendes:

[mm] z*sin(1/z)=z*\summe_{n=1}^{\infty} (-1)^n*z^{-2n-1}/(2n+1)! [/mm]
[mm] =\summe_{n=-\infty}^{0}(-1)^{-n}*z^{2n}/(-2n+1)! [/mm]

[mm] \Rightarrow [/mm] wesentliche Singularität in z=0 und [mm] Res_0(f)=-1/6 [/mm]

Ist das soweit in Ordnung?

zu b) weiß ich jetzt nicht genau was ich machen soll, habe immer Schwierigkeiten, wenn die isolierte Singularität nicht in 0 liegt, sondern wie hier in 1. Über tipps würde ich mich also sehr freuen ;)

Gruß daTidus

        
Bezug
Singularitäten und Residuen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 13.01.2009
Autor: rainerS

Hallo!

> Bestimme die Art der isolierten Singularität und das
> jeweilige Residuum der folgenden Funktionen:
>  
> a) z*sin(1/z)
>  b) [mm]cos(\pi*z)/(z-1)^3[/mm]
>  Also zu a) habe ich folgendes:
>  
> [mm]z*sin(1/z)=z*\summe_{n=1}^{\infty} (-1)^n*z^{-2n-1}/(2n+1)![/mm]
>  
> [mm]=\summe_{n=-\infty}^{0}(-1)^{-n}*z^{2n}/(-2n+1)![/mm]
>  
> [mm]\Rightarrow[/mm] wesentliche Singularität in z=0 und

[ok]

> [mm]Res_0(f)=-1/6[/mm]

[notok] $-1/6$ ist der Koeffizient von [mm] $\bruch{1}{z^2}$. [/mm] Das Residuum ist der Koeffizient von [mm] $\bruch{1}{z}$. [/mm]

> zu b) weiß ich jetzt nicht genau was ich machen soll, habe
> immer Schwierigkeiten, wenn die isolierte Singularität
> nicht in 0 liegt, sondern wie hier in 1. Über tipps würde
> ich mich also sehr freuen ;)

Betrachte zunächst Zähler und Nenner getrennt, untersuche also [mm] $\cos(\pi [/mm] z)$ und [mm] $\bruch{1}{(z-1)^3}$. [/mm] Welche Singularitäten haben die beiden Funktionen? Was folgt dann für [mm] $\bruch{\cos(\pi z)}{(z-1)^3}$? [/mm]

Viele Grüße
   Rainer

Bezug
                
Bezug
Singularitäten und Residuen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 13.01.2009
Autor: daTidus

zu a): stimmt, das residuum müsste dann ja 0 sein, weil 1/z in der reihenentwicklung nicht mehr auftaucht.

zu b) also [mm] cos(\pi*z) [/mm] hat Nullstellen bei z= 1/2+k , wobei [mm] k\in\IZ, (z-1)^3 [/mm] hat Nullstelle bei 1. Daraus kann man (denke ich) folgern, dass bei z=1 keine hebbare Singularität vorliegt, hilft mir das sonst noch weiter?

Bezug
                        
Bezug
Singularitäten und Residuen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Di 13.01.2009
Autor: daTidus

Ah, hatte n Brett vorm Kopf, habs jetzt gelöst:

f(z) hat in z=1 einen Pol 3. Ordnung, daraus folgt:

[mm] Res_1(f)=cos''(\pi)/(3-1)!=\pi^2/2 [/mm]

Bezug
                                
Bezug
Singularitäten und Residuen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Di 13.01.2009
Autor: rainerS

Hallo!

> Ah, hatte n Brett vorm Kopf, habs jetzt gelöst:
>  
> f(z) hat in z=1 einen Pol 3. Ordnung, daraus folgt:
>  
> [mm]Res_1(f)=cos''(\pi)/(3-1)!=\pi^2/2[/mm]  

Ja, das kriegt Maxima auch raus ;-)

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]