Singularitäten / Sinus < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | $f(z) := [mm] \bruch{1}{sin z}, [/mm] g(z) := [mm] sin(\bruch{1}{z}), [/mm] h(z):= [mm] \bruch{1}{sin(\bruch{1}{z})} [/mm] $
untersuchen auf Singularitäten in [mm] \IC [/mm] |
Als "Lösungshinweis" steht dabei: sind die Singularitäten isoliert?
meiner Meinung nach sind die isoliert, weil der Sinus auch in C nur die normalen reellen Nullstellen hat oder?
sin(1/z) hat meiner Meinung nach eine wesentliche Singularität in 0. bei den anderen habe ich keine Ahnung, weil ich nicht weiß wie man die Laurent Reihen darstellen soll?
Kann mir jemand helfen?
Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
[mm]f(z)[/mm]:
Die Nullstellen von [mm]\sin z[/mm] sind Singularitäten (der Nenner des Bruches darf nicht 0 werden).
[mm]\sin z = z - \frac{z^3}{6} + \frac{z^5}{120} \mp \ldots = z \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)[/mm]
Die Klammer stellt eine in einer Umgebung von 0 holomorphe Funktion [mm]s(z)[/mm] dar mit Wert 1 bei [mm]z=0[/mm]. Also ist auch ihr Kehrwert holomorph mit Wert 1 bei [mm]z=0[/mm]. Es muß daher eine Potenzreihenentwicklung geben mit:
[mm]\frac{1}{s(z)} = 1 + a z + b z^2 + \ldots[/mm]
(Man könnte sogar noch mehr sagen: Da [mm]s(z)[/mm] gerade ist, muß auch [mm]\frac{1}{s(z)}[/mm] gerade sein, so daß die Potenzreihe nur gerade Potenzen enthält. Das ist aber für das zu Untersuchende nicht erheblich.) Es gilt also:
[mm]\frac{1}{\sin z} = \frac{1}{z} \left( 1 + a z + b z^2 + \ldots \right)[/mm]
Und jetzt kannst du die Art der Singularität [mm]z=0[/mm] sowie ihr Residuum ablesen. Und was die anderen Singularitäten angeht, kannst du ähnlich argumentieren. Mit [mm]k \in \mathbb{Z}[/mm] gilt:
[mm]\sin z = (-1)^k \sin \left( z - k \pi \right) = (-1)^k \left( ( z - k \pi) - \frac{(z - k \pi)^3}{6} + \frac{(z - k \pi)^5}{120} \mp \right)[/mm]
Und wie das nun weitergeht, sollte klar sein.
[mm]g(z)[/mm]:
Deine Ausführungen dazu sind korrekt.
[mm]h(z)[/mm]:
Singularitäten sind bei [mm]z=0[/mm] und wo [mm]\frac{1}{z} = k \pi[/mm] mit ganzzahligem [mm]k[/mm] gilt. Jetzt ist aber 0 Häufungspunkt dieser Stellen ...
|
|
|
|