matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSingularitäten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Singularitäten
Singularitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularitäten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Mi 05.07.2006
Autor: susi2006

Hallo!

Ich hätte eine Frage bezüglich Singularitäten. Und zwar ist mir nicht ganz klar, um was für eine Singularität es sich bei der Funktion:

[mm] f(z)=:\bruch{cos(z)-1}{z^{4}} [/mm] im Punkt a=0 handelt.

Wenn ich den Zähler betrachte, so stellt man eine Nullstelle 2. Ordnung in a=0 fest.
Der Nenner hat eine Nullstelle 4. Ordung in a=0.

Hat f(z) somit in a=0 eine hebbare Singularität 2. Ordung? und eine Polstelle 2.Ordnung in a??
Gibt es überhaupt so etwas wie hebbare Singularität 2.Ordnung??

Vielen Dank für die Hilfe!!

        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mi 05.07.2006
Autor: goeba

Hi,

ich habe das mal gerade für Dich nachgeschaut, weil ich mir meiner Erinnerung nicht mehr sicher war.

Zunächst: Nullstelle Zähler ist 2. Ordnung, richtig, Nullstelle Nenner ist 4. Ordnung, richtig, damit hat die Funktion auf jeden Fall bei Null eine außerwesentliche Singularität, genauer: Einen Pol zweiter Ordnung.

Jetzt kommt der Unterschied zu meiner Erinnerung: Bei Wikipedia sind nur die Singularitäten hebbar, die durch stetige Fortsetzung beseitigt werden können. Ich hätte eigentlich auch einen Pol als hebbare Singularität bezeichnet. Es kann aber sein, dass ich das mit meromorphen Funktionen durcheinanderschmeiße ...

Also, nach der Wikipedia-Definition: Pol zweiter Ordnung, also eine außerwesentliche, aber nicht hebbare Singularität!

Gruß,

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]