matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieSind die Punkte konjugiert?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Sind die Punkte konjugiert?
Sind die Punkte konjugiert? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sind die Punkte konjugiert?: Vollständigkeit
Status: (Frage) überfällig Status 
Datum: 15:20 Mi 23.07.2014
Autor: pablovschby

Aufgabe
Begründen Sie Ihre Antwort (Beweis/Widerspruch):

(1): Auf einer vollständigen Riemannschen Mannigfaltigkeit M seien die Punkte p,q [mm] $\in$ [/mm] M und [mm] $c_1 [/mm] , [mm] c_2 [/mm] $ minimierende Geodäten zwischen p und q mit [mm] $c_1 \neq c_2$. [/mm] Handelt es sich bei p und q um zwei konjugierte Punkte?

(2): Gibt es eine Riemannsche Metrik <.,.> sodass [mm] $(\mathbb{R}^2,$<.,.>) [/mm] nicht vollständig ist?


(1)
Hopf-Rinow? Wieso soll es hier ein Jacobifeld Y(t) geben mit Y(p)=0=Y(q)? Welches ist das genau? Wie finde ich es?

(2)
Also die Idee ist wohl, dass man eine Metrix findet mit der dann [mm] $(\mathbb{R}^2,$<.,.>) [/mm] nicht vollständig ist? Wie finde ich eine solche Metrik?

Riemann'sche Metrix heisst ja einfach, dass dies eine positiv definite Form ist? Wieso sollte dann eine Cauchy Folge einen Grenzwert haben, der nicht mehr in der Mannigfaltigkeit ist?

Weiss von euch jemand, was man hier tun muss?

        
Bezug
Sind die Punkte konjugiert?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 25.07.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]