matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseSimple Random Walk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Prozesse" - Simple Random Walk
Simple Random Walk < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Simple Random Walk: Optional Sampling
Status: (Frage) überfällig Status 
Datum: 16:58 Fr 16.01.2009
Autor: SorcererBln

Aufgabe
Gegeben seien die Stoppzeiten

[mm] $T^0=\inf\{n|X_n=0\}$ [/mm] und [mm] $T^N:=\inf\{n|X_n=N\}$ [/mm] sowie [mm] $T:=\min\{T^0,T^N\}$, [/mm]

wobei [mm] $X_n=\sum^n_{k=1}Y_k$ [/mm] einen Simple Random Walk darstellt mit Start in $0$, d.h. die [mm] $Y_k$ [/mm] sind unabhängig mit [mm] $P(Y_k=1)=1/2=P(Y_k=-1)$. [/mm]

a) [mm] $X_n$ [/mm] ist beschränkt, d.h. es gibt $K>0$, so dass [mm] $\abs{X_n(\omega)}
b) T ist fast sicher endlich!

Tja, beides konnte ich noch nicht zeigen. Der Versuch

[mm] $|X_n|leq \sum^n_{k=1}\abs|Y_k|=n$ [/mm]

bringt nichts, da die Konstante unabhängig von $n$ sein muss... Habt Ihr eine Idee?

Bei b) muss ich zeigen, dass

[mm] $P(T=\infty)=P(T^0=T^N=\infty)=0$, [/mm]

aber wie zeigt man sowas?


        
Bezug
Simple Random Walk: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 24.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]