matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSignatur
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Signatur
Signatur < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signatur: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 07:00 Do 12.04.2007
Autor: mathedepp_No.1

Guten Morgen liebe Heflerinnen und Helfer,

Habe nur eine reine Verständnisfrage bzgl der Signatur einer symmetrischen Bilinearform.

Angenommen die Matrix A ist Darstellungsmatrix meiner Biliniearform und hat folgendes charakteristisches Polynom : [mm] P_{A}(x)=x^3(x+2)(x+3) [/mm]

Kann ich jetzt die Signatur einfach schon ablesen, sprich mit (p,q,r)=(0,2,3) mit p positiven, q negativen und r=0 EEigenwerte??

Oder muss ich zuerst noch überprüfen ob die algebraische Vielfachheit zum Eigenwert [mm] x_1=0 [/mm] gleich der geometrischen Vielfachheit ist. um damit sagen zu können, dass es eine Matrix g [mm] \in Gl_{n}(\IR) [/mm] , sodass [mm] g*A*g^{-1} [/mm] Diagonalgestalt hat. Dann sind ja dann die Einträge auf der diagonalen genau die Eigenwerte von der Matrix A. und lese ich von dieser dann die Signatur der Bilinearform ab???
Also muss ich , falls mein charakteristisches Polynom nicht in paarweise verschiedene Linearfaktoren zerfällt, erst noch prüfen ob sich meine Matrix überhaupt diagonalisieren lässt, um daraufhin die Signatur bestimmen zu können??Oder Reicht es einfach bzgl. der Signatur die Eigenwerte des charakteristischen Polynoms von A abzulesen, auch wenn die Matrix A beispielsweise NICHT diagonalisierbar????



Wäre prima, wenn mir das jemand beantworten bzw. erklären könnte!!!

Bin ein wenig durcheinander..:-(

Viele Grüße, der mathedepp_No.1

        
Bezug
Signatur: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Do 12.04.2007
Autor: schachuzipus


> Guten Morgen liebe Heflerinnen und Helfer,
>  
> Habe nur eine reine Verständnisfrage bzgl der Signatur
> einer symmetrischen Bilinearform.
>  
> Angenommen die Matrix A ist Darstellungsmatrix meiner
> Biliniearform und hat folgendes charakteristisches Polynom
> : [mm]P_{A}(x)=x^3(x+2)(x+3)[/mm]
>  
> Kann ich jetzt die Signatur einfach schon ablesen, sprich
> mit (p,q,r)=(0,2,3) mit p positiven, q negativen und r=0
> EEigenwerte??

NEIN


>  
> Oder muss ich zuerst noch überprüfen ob die algebraische
> Vielfachheit zum Eigenwert [mm]x_1=0[/mm] gleich der geometrischen
> Vielfachheit ist.  [ok] um damit sagen zu können, dass es eine
> Matrix g [mm]\in Gl_{n}(\IR)[/mm] , sodass [mm]g*A*g^{-1}[/mm]
> Diagonalgestalt hat. Dann sind ja dann die Einträge auf der
> diagonalen genau die Eigenwerte von der Matrix A. und lese
> ich von dieser dann die Signatur der Bilinearform ab??? [daumenhoch]
>  Also muss ich , falls mein charakteristisches Polynom
> nicht in paarweise verschiedene Linearfaktoren zerfällt,
> erst noch prüfen ob sich meine Matrix überhaupt
> diagonalisieren lässt, um daraufhin die Signatur bestimmen
> zu können??

JA!

Oder Reicht es einfach bzgl. der Signatur die

> Eigenwerte des charakteristischen Polynoms von A abzulesen,
> auch wenn die Matrix A beispielsweise NICHT
> diagonalisierbar???? [notok]
>  
>
>
> Wäre prima, wenn mir das jemand beantworten bzw. erklären
> könnte!!!
>  
> Bin ein wenig durcheinander..:-(
>  
> Viele Grüße, der mathedepp_No.1


Moin,

der erste Ansatz zu prüfen, ob algebr. VFH=geometr. VFH ist der Richtige

(Tipp: bestimme die Dimension des Eigenraumes zum Eigenwert 0)

Die ist nämlich 3, so dass für die anderen EW nur alg.VFH=geom. VFH=1 bleibt.

Somit hat jeder EW dieselbe algebr.VFH wie geometr. VFH, damit ist A diagonalis. mit den oben von dir erwähnten Einträgen auf der Diag.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]