matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieSierpinski Dreieck
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Sierpinski Dreieck
Sierpinski Dreieck < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sierpinski Dreieck: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:21 So 01.11.2009
Autor: hannahmaontana

Aufgabe
f sei definiert durch f(x)=j auf den Dreiecken [mm] D_{j,k} [/mm]
[mm] (D_{1,1} [/mm] ist das erste herausgenommene Dreieck, [mm] D_{2,1} [/mm] das zweite, [mm] D_{2,2} [/mm] das dritte usw.)
und f(x)=0 für x [mm] \in [/mm] S, dem Sierpinskidreieck. Beweisen Sie, f ist Lebesgue-integrierbar und bestimmen Sie [mm] \integral_{D}^{}{f(x) dx} [/mm]

f ist L-integrierbar,weil D L-messbar ist.
D ist L-messbar, weil das gesamte Dreieck L-messbar ist und somit auch jede Teilmenge.

Wie bestimme ich jetzt das Integral? Was ist das überhaupt für ein Integral? Das L-Integral ist es anscheinend nicht sonst würde dort [mm] \integral_{D}^{}{f(x) d\mu} [/mm] stehen.

        
Bezug
Sierpinski Dreieck: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 04.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]