matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikSiebformel;Facharbeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Siebformel;Facharbeit
Siebformel;Facharbeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Siebformel;Facharbeit: Frage
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 17.02.2005
Autor: milkalein

hi!
ich muss eine Facharbeit über das Thema Rencontre-Problem schreiben und dabei die Silvester- oder auch Siebformel beweisen.
Zur Veranschaulichung soll ich das Problem erst mal für n=5 beschreiben: also wie groß ist die Wahrscheinlichkeit, dass von n Briefen, die willkürlich in n Umschläge gesteckt werden, keiner in seinem richtigen Umschlag steckt?
Wie komme ich auf die Wahrscheinlichkeit für n=5, ohne die Siebformel zu benutzen und ohne alle verschiedenen möglichkeiten rauszuschreiben, wie die Briefe in den Umschlägen stecken könnten?
Ich bin bisher nur so weit, dass |S|=5! beträt (der Ergebnisraum).
Den Rest der Facharbei habe ich bereits eigenständig erarbeitet!
Bin für jede hilfe und auch für jeden Ansatz dankbar!
milkalein

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Siebformel;Facharbeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Do 17.02.2005
Autor: Stefan

Hallo!

Ich würde die Siebformel einfach sprachlich umschreiben und dann die einzelnen Möglichkeiten einzeln ausrechnen, also etwa so (nur schöner formulieren! ;-)):

Wir interessieren uns für die Wahrscheinlichkeit, dass in mindestens einen der fünf Umschläge der richtige Brief gesteckt wird (denn das Geggenereignis ist die gesuchte Wahrscheinlichkeit).

Zunächst addieren wir für jeden Umschlag die Möglichkeiten, dass zumindestens in ihn der richtige Brief  gesteckt wurde (dafür gibt es $n [mm] \cdot [/mm] (n-1)!$ Möglichkeiten, da man $n$ Umschläge wählen kann und in die übrigen $n-1$ Umschläge irgendeiner der übrigen $n-1$ Briefe gesteckt werden kann), stellen dann aber fest, dass wir die Fälle, wo mindestens zwei Briefe in die richtigen Umschläge gesteckt wurden, doppel gezählt haben und ziehen diese ab. Dies sind ${n [mm] \choose [/mm] 2} [mm] \cdot [/mm] (n-2)!$ Möglichkeiten, da wir aus $n$ Umschlägen $2$ auswählen können, in die die richtigen Briefe gesteckt wurden  und die anderen $n-2$ Umschläge können irgendwelche der übrigen $n-2$ Briefe gesteckt werden. Die Fälle, wo drei Briefe in den richtigen Umschlag gesteckt wurden, wurden dabei aber doppelt gezählt (denn wenn einmal  mindestens in die Umschläge $A$ und $B$ der richtige Brief und ein anderes Mal mindestens in die Umschläge $B$ und $C$ der richtige Brief gesteckt wurde, dann ist der Fall, dass mindestens in die Umschläge $A$, $B$ und $C$ der richtige Brief gesteckt wurde, beides Mal enthalten). Also müssen wir die Fälle, wo mindestens drei Briefe in den richtigen Umschlag gesteckt wurden, wieder dazuaddieren (denn wir haben so vorher zuviel abgezogen). Dies sind ${n [mm] \choose [/mm] 3} [mm] \cdot [/mm] (n-3)!$ Möglichkeiten, da wir aus $n$ Umschlägen $3$ auswählen können, in die die richtigen Briefe gesteckt wurden  und die anderen $n-3$ Umschläge können irgendwelche der übrigen $n-3$ Briefe gesteckt werden.

Usw.

Ob das so gewollt  ist, weiß ich nicht, aber es zeigt, dass du die Formel verstanden hast. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]