matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSesquilineare Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - Sesquilineare Form
Sesquilineare Form < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sesquilineare Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 So 08.03.2009
Autor: daisa

Aufgabe
Seien V ein komplexer Vektorraum und s : V [mm] \times [/mm] V [mm] \to \IC [/mm] eine sesquilineare Form. Für v [mm] \in [/mm] V definiert man q(v) := s(v,v). Zeign Sie, dass s genau dann hermitesch ist, wenn q(v) für alle v [mm] \in [/mm] V reell ist.

Hallo zusammen

zu zeigen ist ja: s hermitsch [mm] \gdw [/mm] q(v) reell [mm] \forall [/mm] v [mm] \in [/mm] V.

hermitesch bedeutet: s(v,v) = [mm] \overline{s(v,v)}. [/mm]

Ich habe mir mal was überlegt, aber ich glaube so wäre es zu simpel.

s hermitesch [mm] \gdw [/mm] s(v,v) = [mm] \overline{s(v,v)} \gdw [/mm] g(v) = [mm] \overline{g(v)} \gdw [/mm] g(v) reell.

was meint ihr dazu?
lg, daisa

        
Bezug
Sesquilineare Form: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 So 08.03.2009
Autor: rainerS

Hallo daisa!

> Seien V ein komplexer Vektorraum und s : V [mm]\times[/mm] V [mm]\to \IC[/mm]
> eine sesquilineare Form. Für v [mm]\in[/mm] V definiert man q(v) :=
> s(v,v). Zeign Sie, dass s genau dann hermitesch ist, wenn
> q(v) für alle v [mm]\in[/mm] V reell ist.
>  Hallo zusammen
>  
> zu zeigen ist ja: s hermitsch [mm]\gdw[/mm] q(v) reell [mm]\forall[/mm] v [mm]\in[/mm]
> V.
>  
> hermitesch bedeutet: s(v,v) = [mm]\overline{s(v,v)}.[/mm]

Nein, hermtiesch bedeutet $s(u,v) = [mm] \overline{s(v,u)}$ [/mm] für alle [mm] $u,v\in [/mm] V$.

>  
> Ich habe mir mal was überlegt, aber ich glaube so wäre es
> zu simpel.
>  
> s hermitesch [mm]\gdw[/mm] s(v,v) = [mm]\overline{s(v,v)} \gdw[/mm] g(v) =
> [mm]\overline{g(v)} \gdw[/mm] g(v) reell.

Du hast damit die eine Richtung gezeigt: wenn s hermitesch ist, so ist q reell.

Tipp für die umgekehrte Richtung: Berechne $q(u+v)$!

Viele Grüße
   Rainer

Bezug
                
Bezug
Sesquilineare Form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 So 08.03.2009
Autor: daisa

Definition hermitesch: oops, das hab ich ja vom Buch total falsch abgeschrieben.. :-S Dann stimmt mein Beweis ja sowieso nicht.. Ich probiers noch einmal..
danke trotzdem!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]