matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisSeparabelität zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Separabelität zeigen
Separabelität zeigen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separabelität zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:10 Di 15.11.2016
Autor: bquadrat

Aufgabe
Zeigen Sie, dass [mm] C^{1}([a,b]) [/mm] mit der Norm [mm] ||*||_{\infty,1} [/mm] gegeben [mm] durch||f||_{\infty,1}=||f||_{\infty}+||f'||_{\infty} [/mm] separabel ist

Hallo,

aus damaligen Vorlesungen weiß man, dass [mm] C^{0}(X)=C(X) [/mm] mit kompaktem metrischen Raum (X,d) bzgl. der Supremumsnorm [mm] ||*||_{\infty} [/mm] separabel ist (man betrachte dazu die Menge aller Polynome mit rationalen Koeffizienten). Das ist meines Wissens nach der Satz von Stone-Weierstraß.
Für die obige Aufgabe wird man wohl die selbe abzählbare Menge, nennen wir sie [mm] P_{\IQ} [/mm] ,die Menge jener Polynome mit rationalen Koeffizienten und Definitionsbereich [a,b] verwenden können. Man zeige also [mm] \overline{P_{\IQ}}=C^{1}([a,b]) [/mm] bzgl. der Norm [mm] ||*||_{\infty,1} [/mm]
Ich versuche dies gerade mit der beidseitigen Teilmengenrelation zu zeigen.
[mm] p_{n}' [/mm] ist auch ein rationales Polynom. So muss die Grenzfunktion bzgl der Supremumsnorm ja nicht mal differenzierbar sein. Was wir aber auf jeden Fall sagen können, ist, dass ich jede Funktion in [mm] C^{1}([a,b]) [/mm] als Grenzfunktion bzgl. obiger Norm solcher Polynome darstellen kann, da ich das schon für alle stetigen Funktionen machen kann. Wwas mache ich mit der Richtung [mm] \subseteq [/mm] ? Könnt ihr mir bitte weiterhelfen?

        
Bezug
Separabelität zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 17.11.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]