matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieSchwerpunktberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Schwerpunktberechnung
Schwerpunktberechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunktberechnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:51 Mi 15.10.2008
Autor: Kotsch

Aufgabe
Berechnen sie den schwerpunkt S(x,y) des ebenen Bereichs, der von der Linie y = x und der Parabel y= X² begrenzt wird

Hallo,
Meine Frage ist wie ich das Inetegral zur Schwerpunktberechnunng aufbaue.
Die Fläche konnte ich noch berechnen, indem ich die Fläche der Parabel von der Fläche des Dreiecks abgezogen habe. Fläche A= 1/6

Danke


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Schwerpunktberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 15.10.2008
Autor: leduart

Hallo
statt dir das jetzt lang aufzuschreiben: guck einfach in Wikipedia unter Schwerpunkt nach. Da steht so ungefaehr alles, was ich dir erst aufschreiben muesste.
scrll nach unten, da steht das fuer den 2 und dreidimensinalen fall,
Wenn dann noch Fragen sind meld dich wieder.
A=1/6 stimmt.
Gruss leduart

Bezug
                
Bezug
Schwerpunktberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 15.10.2008
Autor: Kotsch

auf wikipedia werden aber nur einfachintegrale behandelt, ich möchte die aufgabe aber mit doppelintegral lösen.

Bezug
                        
Bezug
Schwerpunktberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mi 15.10.2008
Autor: angela.h.b.


> auf wikipedia werden aber nur einfachintegrale behandelt,
> ich möchte die aufgabe aber mit doppelintegral lösen.

Hallo,

[willkommenmr].

Nein, []hier hast Du es doch mit Flächenintegralen zu tun:

[mm] x_s=\frac{1}{A}\int_A [/mm] x dA = [mm] \integral_{y=...}^{...}\integral_{x=...}^{...}{x dx dy} [/mm]

[mm] y_s=\frac{1}{A}\int_A [/mm] y dA [mm] =\integral_{y=...}^{...}\integral_{x=...}^{...}{y dx dy} [/mm]


Gedanken mußt Du Dir über die Integrationsgrenzen machen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]