matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSchwarzfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Schwarzfahren
Schwarzfahren < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwarzfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Mi 21.11.2007
Autor: mathe-tu-muenchen

Aufgabe
Der Schaffner weiß, dass jeder 10 Fahrgast ohne Ticket unterwegs ist. Er kontrolliert 20 Fahrgäste.

Wie hoch ist die Wahrscheinlichkeit, dass er

1) keinen Schwarzfahrer
2) einen Schwarzfahrer
3) mindestenst 2 Schwarzfahrer

erwischt?

Hallo!

zu 1) P(X=0) = [mm] (\bruch{9}{10})^{20} [/mm] = 0.122

Also die Wahrscheinlichkeit, dass ein Schwarzfahrer ertappt wird p = [mm] \bruch{1}{10}. [/mm] Daraus habe ich dann P(X=0) durch die Formel ausgerechnet.

zu 2) P(X=1) = 20 * [mm] \bruch{1}{10} (\bruch{9}{10})^{19} [/mm] = 0.2701

zu 3) P(X>1) = 1- P(X=0) = 0.878

Kann das so stimmen?

        
Bezug
Schwarzfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Mi 21.11.2007
Autor: M.Rex

Hallo

> Der Schaffner weiß, dass jeder 10 Fahrgast ohne Ticket
> unterwegs ist. Er kontrolliert 20 Fahrgäste.
>  
> Wie hoch ist die Wahrscheinlichkeit, dass er
>
> 1) keinen Schwarzfahrer
>  2) einen Schwarzfahrer
>  3) mindestenst 2 Schwarzfahrer
>
> erwischt?
>  Hallo!
>  
> zu 1) P(X=0) = [mm](\bruch{9}{10})^{20}[/mm] = 0.122
>  
> Also die Wahrscheinlichkeit, dass ein Schwarzfahrer ertappt
> wird p = [mm]\bruch{1}{10}.[/mm] Daraus habe ich dann P(X=0) durch
> die Formel ausgerechnet.

Ist korrekt

>  
> zu 2) P(X=1) = 20 * [mm]\bruch{1}{10} (\bruch{9}{10})^{19}[/mm] =
> 0.2701
>  

Auch korrekt

> zu 3) P(X>1) = 1- P(X=0) = 0.878

Fast: [mm] P(X>1)=1-(P(X=0)+\red{P(X=1)}) [/mm]


Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]