matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchwaches Gesetz d. gr. Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Schwaches Gesetz d. gr. Zahlen
Schwaches Gesetz d. gr. Zahlen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwaches Gesetz d. gr. Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Do 16.03.2006
Autor: dancingestrella

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

Das Schwache Gesetz der Großen Zahlen haben wir für $\IR$-wertige i.i.d. $X_{i}$ mit $E(X_{i})=:\mu \in \IR$ und $Var(X_{i})\le M, M< \infty$ formuliert:
Für alle $\epsilon<0$ gilt:
$P\{|1/n \summe_{i=n}^{n}X_{i} - \mu | \ge \epsilon\} \le M/(\epsilon^2 n) \rightarrow 0$
Ich weiß nur leider nicht so viel damit anzufangen, was sagt dass denn in Worte gepackt aus?

Dann hatten wir ein Korollar dazu:
Seien $Y_{i}: (\Omega, \mathcal{A},P) \rightarrow (\tilde{\Omega},\tilde{\mathcal{A})$ i.i.d., dann gilt:
$P\{|1/n \summe_{i=1}^{n}1_{\tilde{A}} (Y_{i}) - P\{Y_{i} \in \tilde{A}\} | \ge \epsilon \} \rightarrow 0$

Hierbei verstehe ich den Beweis nicht.
"$X_{i}:=1_{\tilde{A}}(Y_{i})$."
Indikatorfunktionen kenne ich zwar, aber mich irritiert es, dass dahinter $(Y_{i})$ steht. Normalerweise steht da doch immer $(\omega)$, oder? Damit komme ich nicht klar. Wie muss ich mir das hier vorstellen?
"Dann sind die $X_{i}$ i.i.d. mit
$E(X_{i})=P\{Y_{i} \in \tilde{A}\}$"
Das kommt doch von $E(1_{A})=P(A)$, oder? Ist denn $P\{Y_{i} \in \tilde{A}\}=P\{\omega \in \Omega | Y_{i}(\omega) \in \tilde{A}\} =P(A)$?
Jedenfalls sehe ich, dass wir damit schonmal den linken Teil der obigen Ungleichung vom schwavchen Gesetz der Großen Zahlen haben.
$Var(X_{i})=E((X_{i})^2)-E^2(X_{i})=2E(X_{i})-E^2(X_{i})$
Hier komme ich nun gar nicht mehr hinterher (meine Notizen geben nicht so viel her...). Kann mir jemand verraten wie es weitergeht?

dancingestrella

        
Bezug
Schwaches Gesetz d. gr. Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Fr 17.03.2006
Autor: felixf

Hi!

> Das Schwache Gesetz der Großen Zahlen haben wir für
> [mm]\IR[/mm]-wertige i.i.d. [mm]X_{i}[/mm] mit [mm]E(X_{i})=:\mu \in \IR[/mm] und
> [mm]Var(X_{i})\le M, M< \infty[/mm] formuliert:
>  Für alle [mm]\epsilon<0[/mm] gilt:
>  [mm]P\{|1/n \summe_{i=n}^{n}X_{i} - \mu | \ge \epsilon\} \le M/(\epsilon^2 n) \rightarrow 0[/mm]
>  
> Ich weiß nur leider nicht so viel damit anzufangen, was
> sagt dass denn in Worte gepackt aus?

Im Prinzip sagt es etwas aus, was man in der Praxis so erwarten wuerde und was viele Leute auch benutzen (ohne zu wissen warum das so ist): Wenn du einen Versuch ganz oft durchfuehrst und die Messwerte mittelst, dann ist der Mittelwert recht nah dran am 'richtigen (zu erwartenden) Wert' des Versuches.

> Dann hatten wir ein Korollar dazu:
>  Seien [mm]Y_{i}: (\Omega, \mathcal{A},P) \rightarrow (\tilde{\Omega},\tilde{\mathcal{A})[/mm]
> i.i.d., dann gilt:
>  [mm]P\{|1/n \summe_{i=1}^{n}1_{\tilde{A}} (Y_{i}) - P\{Y_{i} \in \tilde{A}\} | \ge \epsilon \} \rightarrow 0[/mm]

Ich nehme mal an, [mm] $\tilde{A} \subseteq \IR$ [/mm] ist irgendeine [mm] $\IB$-messbare [/mm] Menge?

> Hierbei verstehe ich den Beweis nicht.
>  "[mm]X_{i}:=1_{\tilde{A}}(Y_{i})[/mm]."
>  Indikatorfunktionen kenne ich zwar, aber mich irritiert
> es, dass dahinter [mm](Y_{i})[/mm] steht. Normalerweise steht da
> doch immer [mm](\omega)[/mm], oder? Damit komme ich nicht klar. Wie
> muss ich mir das hier vorstellen?

Mit [mm] $1_{\tilde{A}}(Y_i)$ [/mm] ist die Verkettung [mm] $1_{\tilde{A}} \circ Y_i$ [/mm] gemeint! Es ist also folgende Funktion (wenn [mm] $Y_i [/mm] : [mm] \Omega \to \IR$ [/mm] ist): [mm] $1_{\tilde{A}}(Y_i) [/mm] : [mm] \Omega \to \IR$, $\omega \mapsto \begin{cases}1 & Y_i(\omega) \in \tilde{A} \\ 0 & Y_i(\omega) \not\in \tilde{A} \end{cases}$. [/mm]

> "Dann sind die [mm]X_{i}[/mm] i.i.d. mit
>  [mm]E(X_{i})=P\{Y_{i} \in \tilde{A}\}[/mm]"
>  Das kommt doch von
> [mm]E(1_{A})=P(A)[/mm], oder?

Genau.

> Ist denn [mm]P\{Y_{i} \in \tilde{A}\}=P\{\omega \in \Omega | Y_{i}(\omega) \in \tilde{A}\} =P(A)[/mm]?

Wenn $A = [mm] \{\omega \in \Omega | Y_{i}(\omega) \in \tilde{A}\}$ [/mm] ist, ja. Aber ich glaub nicht dass du das meintest.

Es ist zumindest [mm] $P\{\omega \in \Omega | Y_{i}(\omega) \in \tilde{A}\} [/mm] = [mm] P(1_{\tilde{A}}(Y_i) [/mm] = 1) = [mm] E(1_{\tilde{A}}(Y_i))$, [/mm] da die Zufallsvariable [mm] $1_{\tilde{A}}(Y_i)$ [/mm] nur die Werte $0$ und $1$ annimmt.

> Jedenfalls sehe ich, dass wir damit schonmal den linken
> Teil der obigen Ungleichung vom schwavchen Gesetz der
> Großen Zahlen haben.
> [mm]Var(X_{i})=E((X_{i})^2)-E^2(X_{i})=2E(X_{i})-E^2(X_{i})[/mm]
>  Hier komme ich nun gar nicht mehr hinterher (meine Notizen
> geben nicht so viel her...).

Die Aussage gilt so sicher nicht: Wenn du die $2$ vor [mm] $E(X_i)$ [/mm] hinten weglaesst, gilt sie dagegen schon! (Da [mm] $X_i^2 [/mm] = [mm] X_i$ [/mm] ist: [mm] $0^2 [/mm] = 0$ und [mm] $1^2 [/mm] = 1$.)

Zumindest ist [mm] $Var(X_i) [/mm] = [mm] E(X_i) [/mm] - [mm] E^2(X_i) [/mm] = [mm] P(\tilde{A}) [/mm] - [mm] P(\tilde{A})^2 \in [/mm] [0, 1]$, womit du mit dem Schwachen Gesetz der grossen Zahlen abschliessen kannst (da [mm] $M/(\varepsilon [/mm] n) [mm] \to [/mm] 0$ fuer $n [mm] \to \infty$). [/mm]

LG Felix


Bezug
                
Bezug
Schwaches Gesetz d. gr. Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Sa 18.03.2006
Autor: dancingestrella

Hallo...

Also für [mm] $\tilde{\mathcal{A}}$ [/mm] haben wir keine weiteren Einschränkungen gemacht.

Eine Frage habe ich dazu aber noch:
[mm] $Var(X_{i})=E(X_{i}) [/mm] - [mm] E^2(X_{i})$ [/mm]
Nun nimmt doch [mm] $X_{i}$ [/mm] nur die Werte 0 und 1 an, also müsste der Erwartungswert entweder 0 oder 1 sein. Für das gleiche i ist dann doch die Varianz immer Null, oder? Na ja, du hattest ja geschrieben, dass die Varianz Werte aus [0,1] annimmt, wieso liege ich da falsch?

viele Grüße, dancingestrella

Bezug
                        
Bezug
Schwaches Gesetz d. gr. Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:20 So 19.03.2006
Autor: felixf

Hallo,

> Also für [mm]\tilde{\mathcal{A}}[/mm] haben wir keine weiteren
> Einschränkungen gemacht.

also [mm] $\tilde{A}$ [/mm] muss messbar sein, ansonsten macht es keinen Sinn die Wahrscheinlichkeit von [mm] $Y_i \in \tilde{A}$ [/mm] zu betrachten! (Da die Menge [mm] $\{ Y_i \in \tilde{A} \}$ [/mm] dann im allgemeinen nicht messbar ist.)

> Eine Frage habe ich dazu aber noch:
>  [mm]Var(X_{i})=E(X_{i}) - E^2(X_{i})[/mm]
>  Nun nimmt doch [mm]X_{i}[/mm] nur
> die Werte 0 und 1 an, also müsste der Erwartungswert
> entweder 0 oder 1 sein.

Das stimmt nicht! Ist zum Beispiel [mm] $P(X_i [/mm] = 0) = [mm] P(X_i [/mm] = 1) = 1/2$, so ist [mm] $E(X_i) [/mm] = 1/2 [mm] \cdot [/mm] 0 + 1/2 [mm] \cdot [/mm] 1 = 1/2$!

> Für das gleiche i ist dann doch die
> Varianz immer Null, oder? Na ja, du hattest ja geschrieben,
> dass die Varianz Werte aus [0,1] annimmt, wieso liege ich
> da falsch?

Der Erwartungswert ist immer [mm] $P(X_i [/mm] = 1) [mm] \in [/mm] [0, 1]$. Und die Funktion $x [mm] \mapsto [/mm] x (1 - x)$ bildet $[0, 1]$ in $[0, 1]$ ab. Damit liegt [mm] $Var(X_i) \in [/mm] [0, 1]$.

LG Felix


Bezug
                                
Bezug
Schwaches Gesetz d. gr. Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 So 19.03.2006
Autor: dancingestrella

danke, jetzt habe ich es verstanden!
aber wir hatten als Voraussetzung wirklich nur, dass
[mm] $X_{i}:(\Omega,\mathcal{A},P) \rightarrow (\tilde{\Omega}, \tilde{\mathcal{A}})$ [/mm] i.i.d. Zufallsvariablen sind...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]