matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenSchur Zerlegung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Schur Zerlegung
Schur Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schur Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:51 Sa 19.06.2010
Autor: Tanja26

Aufgabe
Berechnen Sie die Schur-Zerlegung der Matrix
[mm] A=\pmat{ -3 & -1 & 2 \\ 1 & -3 & -6 \\ 2 & 6 & 7} [/mm]

Moin,
Ich habe zu erst die Eigenwerte gerechnet : [mm] \lambda_{1}=-1 [/mm]
[mm] \lambda_{2}= [/mm] 1-i
[mm] \lambda_{3} [/mm] = 1+i
dann Eigenvektoren [mm] E_{\lambda_{1}}=\vektor{2 \\ -2 \\ 1} E_{\lambda_{2,3}}=\vektor{0 \\ 0 \\ 0} [/mm]
Und meine Frage wie berechne ich jetzt [mm] V^{-1}_{n}*A*V_{n}, [/mm]
wie muss eigentlich [mm] V_{n} [/mm] aussehen

        
Bezug
Schur Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Sa 19.06.2010
Autor: schachuzipus

Hallo Tanja,

> Berechnen Sie die Schur-Zerlegung der Matrix
>  [mm]A=\pmat{ -3 & -1 & 2 \\ 1 & -3 & -6 \\ 2 & 6 & 7}[/mm]
>  Moin,
>  Ich habe zu erst die Eigenwerte gerechnet :
> [mm]\lambda_{1}=-1[/mm]
>  [mm]\lambda_{2}=[/mm] 1-i
>  [mm]\lambda_{3}[/mm] = 1+i [ok]
>  dann Eigenvektoren [mm]E_{\lambda_{1}}=\vektor{2 \\ -2 \\ 1} [/mm] [ok] [mm] E_{\lambda_{2,3}}=\vektor{0 \\ 0 \\ 0}[/mm] [notok]

Das kann doch gar nicht sein. Ein Nullvektor ist doch per definitionem kein Eigenvektor.

Da musst du nochmal nachrechnen (zur Not hier vorrechnen ;-))

>  
> Und meine Frage wie berechne ich jetzt [mm]V^{-1}_{n}*A*V_{n},[/mm]
> wie muss eigentlich [mm]V_{n}[/mm] aussehen  

Dazu gibt's im Netz zahlreiche Beispiele, u.a auf Wikipedia.

Aber besorge dir erstmal die richtigen Eigenvektoren, dann sehen wir weiter ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]