matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchranke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Schranke
Schranke < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schranke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 23.03.2005
Autor: nitro1185

Hallo!!ich hätte eine kleine Frage zu meiner Übung!

Ein zufallsexperiment hat zwei mögliche Ausgänge A und B.Die Wahrscheinlichkeit für den Ausgang B sei x. Wird das Experiment N mal wiederholt ,dann bezeichnet man [mm] N_{B} [/mm]  die Anzahl der Experimente mit Ausgang B!!Die Chebyshevungleichung zur strochastischen Variablen
[mm] N_{B} [/mm] gibt eine obere schranke für die Wahrscheinlichkeit an ,dass die Häufigkeit des Ausgangs B, nämlich [mm] N_{B}/N [/mm] von x um mehr als a*x abweicht, wobie a [mm] \in [/mm] R!!Berechnen sie diese Schranke für [mm] N=10^{22} [/mm]

x= [mm] 10^{-3} [/mm] und a= [mm] 10^{-3} [/mm]

So meine Ideen:

Das ist doch eine binomialverteilung => p(k)= [mm] x^{k}*(x-1)^{N-k} [/mm] * [mm] \vektor{N \\ k} [/mm]

Das ist die Wahrscheinlichkeit für k mal B als Ausgang zu haben unter N Versuchen!!

Die ungleichung lautet: v(f)= t²*W({w [mm] \in [/mm] D| |f(w)-<f>| > t})

f müsste bei uns [mm] N_{B} [/mm] sein und D ist {A,B}

Ich glaube dass die Abbildung gleich der identischen Abbildung ist!!!

Also: A=0 B=1    [mm] N_{B}: {0,1}^{N} [/mm] ----> R; w ---> Summer aller Ausgänge

Diese Funktion gibt die Anzahl der Ausgänge B wider!!

=> [mm] v(N_{B}) [/mm] ..Varianz= N*x*(1-x)

=> [mm] ..Erwartungswert [/mm] = N*x

So wie wende ich nun die Gleichung an??? Danke für eure Hilfe.Daniel

        
Bezug
Schranke: Antwort (Versuch)
Status: (Antwort) fertig Status 
Datum: 18:54 Do 24.03.2005
Autor: Zwerglein

Hi, Daniel,

also ich hatte erst mal Probleme mit Deiner Schreibweise:
Tschebyschoff, Tschebyscheff, Tschebyschow, Tschebyschov, alles das hab' ich schon gesehen, aber "Chebyshev" ist für mich neu! Sieht aber echt cool aus!

> Ein zufallsexperiment hat zwei mögliche Ausgänge A und
> B.Die Wahrscheinlichkeit für den Ausgang B sei x. Wird das
> Experiment N mal wiederholt ,dann bezeichnet man [mm]N_{B}[/mm]  die
> Anzahl der Experimente mit Ausgang B!!Die
> Chebyshevungleichung zur strochastischen Variablen
> [mm]N_{B}[/mm] gibt eine obere schranke für die Wahrscheinlichkeit
> an ,dass die Häufigkeit des Ausgangs B, nämlich [mm]N_{B}/N[/mm] von
> x um mehr als a*x abweicht, wobie a [mm]\in[/mm] R!!Berechnen sie
> diese Schranke für [mm]N=10^{22} [/mm]
>  
> x= [mm]10^{-3}[/mm] und a= [mm]10^{-3} [/mm]
>  

Sind diese Zahlen auch noch vorgegeben? Oder soll's doch eher für allgemeines x berechnet werden?

> So meine Ideen:
>  
> Das ist doch eine binomialverteilung => p(k)=
> [mm]x^{k}*(x-1)^{N-k}[/mm] * [mm]\vektor{N \\ k} [/mm]

In der Klammer muss aber 1-x stehen! (für x=0,001 also: 1-x=0,999
  
Ich schreibe die Tschebyschoff-Ungleichung mal in der mir bekannten Form für Deine Aufgabe:
[mm] (h_{n} [/mm] steht für [mm] \bruch{N_{B}}{N}!) [/mm]
[mm] P(|h_{n}-x| \ge [/mm] a*x) [mm] \le \bruch{x*(1-x)}{(a*x)^{2}*N} [/mm] = [mm] \bruch{0,001*0,999}{(0,001*0,001)^{2}*10^{22}}= 9,99*10^{-14} [/mm]

(Nachrechnen! Die Zahlen sind ja reichlich ungewöhnlich!)

Bezug
                
Bezug
Schranke: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Do 24.03.2005
Autor: nitro1185

hallo!!

Danke für deine Antwort.ich habe zuuu kompliziert gedacht :-)!!!

MFG daniel

Bezug
                
Bezug
Schranke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Sa 26.03.2005
Autor: nitro1185

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Zwerglein!!

Wieso steht bei dir das N im Nenner?

Müsste es nicht lauten: \bruch{N*x*(1-x)}{a²*x²)

Das kann aber nicht stimmen,da eine sehr große Wahrscheinlichkeit auftreten würde ?????

Viell. hat es was mit dem N_{B}/N zu tun??

MFG dani

Bezug
                        
Bezug
Schranke: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 So 27.03.2005
Autor: Zwerglein

Hi, nitro,

> Wieso steht bei dir das N im Nenner?
>  
> Müsste es nicht lauten: [mm] \bruch{N*x*(1-x)}{a²*x²} [/mm]
>  
> Das kann aber nicht stimmen,da eine sehr große
> Wahrscheinlichkeit auftreten würde ?????
>  
> Viell. hat es was mit dem [mm] N_{B}/N [/mm] zu tun??
>  

Die Formel für binomial verteilte Zufallsgrößen lautet definitiv
[mm] P(|h_{n}-p| \ge \epsilon) \le \bruch{p*(1-p)}{\epsilon^{2}*n} [/mm]

Die Formel, die Du evtl. meinst, lautet zwar

P(|X-E(X)| [mm] \ge [/mm] a) [mm] \le \bruch{Var(X)}{a^{2}}, [/mm]

kann aber mit Division durch n in die obige umgeformt werden, wobei zu beachten ist, dass [mm] \epsilon [/mm] = [mm] \bruch{a}{n} [/mm] ist!

Denk' noch mal drüber nach!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]