matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenSchnittwinkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Schnittwinkel
Schnittwinkel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Mi 24.12.2008
Autor: Dinker

Ich soll den Schnittwinkel von f(x) = [mm] x^{3} [/mm] - [mm] 3x^{2} [/mm] +2
und y= 3x +6 Berechnen

[mm] x^{3} [/mm] - [mm] 3x^{2} [/mm] +2 = 3x +6
0 = [mm] x^{3} [/mm] - [mm] 3x^{2} [/mm] -3x - 4

Ich bringe es einfach nicht fertig diese Gleichung zu berechnen.



Wäre sehr dankbar um Hilfe
Gruss Dinker

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Schnittwinkel: probieren und Polynomdivision
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 24.12.2008
Autor: Loddar

Hallo Dinker!


Wenn Du auf diese Gleichung nun nicht gerade die []Cardanische Formel hetzen willst, musst Du hier eine Nullstelle durch Probieren herausfinden.

Wenn es eine ganzzahlige Lösiung gibt (und es gibt genau eine!), muss dies auch ein Teiler des Absolutgliedes - hier: $-4_$ - sein.

Probiere also mal mit [mm] $\pm1; [/mm] \ [mm] \pm [/mm] 2; \ [mm] \pm [/mm] 4$ .

Anschließend dann mit deiser ermittelten Nullstelle [mm] $x_0$ [/mm] eine MBPolynomdivision durchführen:
[mm] $$\left(x^3-3x^2-3x-4\right) [/mm] \ : \ [mm] \left(x-x_0\right) [/mm] \ = \ ...$$
Dies ist in diesem Falle nicht notwendig, da es nur eine Schnittstelle gibt.


Gruß
Loddar


Bezug
                
Bezug
Schnittwinkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Mi 24.12.2008
Autor: Dinker

Besten Dank, schon etwas mühsam...

Habs versucht bis zum Shcluss zu machen, dass es für mich einleuchtend ist:

Hab mal gesagt x =4

[mm] (x^{3} -3x^{2} [/mm] -3x -4) : (x-4) = [mm] x^{2} [/mm] + x + 1

Dann lautet meine Gleichung
0 = (x-4) * [mm] (x^{2} [/mm] + x + 1)
Eines der beiden Produkte muss null sein, das erste ist bei x = 4
und beim zweiten kann keine Zahl für x eingesetzt werden, dass es Null gibt


Bezug
                        
Bezug
Schnittwinkel: alles richtig
Status: (Antwort) fertig Status 
Datum: 14:02 Mi 24.12.2008
Autor: Loddar

Hallo Dinker!


[daumenhoch] Top!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]