matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenSchnittpunkt bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Schnittpunkt bestimmen
Schnittpunkt bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 04.12.2008
Autor: Delia00

Aufgabe
Geg: [mm] f(x)=x^{2}+4x+1 [/mm]
g(x)=2ax, a >0
Bestimme den Schnittpungt der Graphen

Hallo Zusammen,

mein Ansatz zu dieser Aufgabe lautet:

[mm] x^{2}+4x+1 [/mm] = 2ax
0 = [mm] x^{2}+4x-2ax+1 [/mm]
0 = [mm] x^{2}+x*(4-2a)+1 [/mm]

[mm] x_{1,2} [/mm] = [mm] \bruch{2a-4}{2} \pm \wurzel{\bruch{(4-2a)^{2}}{4} - 1} [/mm]

= [mm] \bruch{2a-4}{2} \pm \wurzel{\bruch{16-16a+4a^{2}-4}{4}} [/mm]

= [mm] \bruch{2a-4}{2} \pm \wurzel{\bruch{12-16a+4a^{2}}{4}} [/mm]


Ab hier komme ich leider nicht mehr weiter.

Könnte mir da bitte jemand weiter helfen.

Vielen Dank im voraus

        
Bezug
Schnittpunkt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Do 04.12.2008
Autor: MathePower

Halllo Delia00,

> Geg: [mm]f(x)=x^{2}+4x+1[/mm]
>  g(x)=2ax, a >0
>   Bestimme den Schnittpungt der Graphen
>  Hallo Zusammen,
>  
> mein Ansatz zu dieser Aufgabe lautet:
>  
> [mm]x^{2}+4x+1[/mm] = 2ax
>  0 = [mm]x^{2}+4x-2ax+1[/mm]
>  0 = [mm]x^{2}+x*(4-2a)+1[/mm]
>  
> [mm]x_{1,2}[/mm] = [mm]\bruch{2a-4}{2} \pm \wurzel{\bruch{(4-2a)^{2}}{4} - 1}[/mm]
>  
> = [mm]\bruch{2a-4}{2} \pm \wurzel{\bruch{16-16a+4a^{2}-4}{4}}[/mm]
>  
> = [mm]\bruch{2a-4}{2} \pm \wurzel{\bruch{12-16a+4a^{2}}{4}}[/mm]
>  
>
> Ab hier komme ich leider nicht mehr weiter.
>  


Untersuche, wann die Graphen Schnittpunkt haben können.

Maßgeblich dafür verantwortlich ist der Ausdruck unter der Wurzel.


> Könnte mir da bitte jemand weiter helfen.
>  
> Vielen Dank im voraus


Gruß
MathePower

Bezug
                
Bezug
Schnittpunkt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Do 04.12.2008
Autor: Delia00

Ich hab für den Teil unter der Wurzel mal die pq-Formel angewandt.

Damit erhalte ich zum einen a=1 und zum anderen a=3

Muss ich dann einfach die möglichen Fälle für diese Werte untersuchen??

Bezug
                        
Bezug
Schnittpunkt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Do 04.12.2008
Autor: MathePower

Hallo Delia00,

> Ich hab für den Teil unter der Wurzel mal die pq-Formel
> angewandt.
>  
> Damit erhalte ich zum einen a=1 und zum anderen a=3
>  
> Muss ich dann einfach die möglichen Fälle für diese Werte
> untersuchen??


Jetzt mußt Du entscheiden, wann

[mm]\left(a-1\right)\left(a-3\right) \ge 0 [/mm]

ist.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]