matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnitt zweier Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Schnitt zweier Ebenen
Schnitt zweier Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt zweier Ebenen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 07:26 Sa 31.01.2009
Autor: Einstein_1977

Aufgabe
Bestimme die Werte von a,b und c so, dass gilt:

E1: x = [mm] \vektor{a \\ 3 \\ 1} [/mm] + r [mm] \vektor{1 \\ 0 \\ 1} [/mm] + s [mm] \vektor{1 \\ 2 \\ 0} [/mm]
E2: x = [mm] \vektor{2 \\ 1 \\ 5} [/mm] + r* [mm] \vektor{b \\ 1 \\ 1} [/mm] + s* [mm] \vektor{c \\ 2 \\1} [/mm]


1. Aufgabe: E1 = E2
2. Aufgabe: E1, E2 parallel
3. Aufgabe E1, E2 schneiden sich in einer Geraden


Ich habe damit angefangen, beide Parametergleichungen gleich zu setzen und über ein lineares Gleichungssystem aufzulösen. Dabei habe ich z.B. r auf der linken Seite stehen und r* und s* auf der rechten Seite; nun weiß ich leider nicht mehr weiter - eigentlich sollte doch so etwas wie 0 = 0 (w) oder 0 = .. (f) herauskommen - dies ist natürlich von den Parametern abhängig. Jedoch ist es sehr schwer bei drei Parametern noch durchzublicken - gibt es vielleicht eine einfachere Methode - diese Aufgabe zu lösen - wir sollen aber keine Determinanten verwenden. Ich weiß leider nicht, wie ich aber die linearen Gleichungssysteme so verwenden kann, dass ich anhand der dann noch übrig gebliebenen Parameter eine Aussage treffen kann.

Vielleicht kann mir jemand einen Lösungsvorschlag unterbreiten oder einen nützlichen Tipp geben.

VIELEN VIELEN DANK

        
Bezug
Schnitt zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:43 Sa 31.01.2009
Autor: Slartibartfast

Hallo Einstein_1977,

die viel einfachere Lösung lautet Koordinatenform. Es reicht, wenn du eine der beiden Ebenen transformierts und dann die Parameterversion in die Koordinatenform einsetzt.

Der  Anfang funktioniert folgendermaßen:

Koordinatenform: [mm] $n_1 x_1 +n_2 x_2 +n_3 x_3 [/mm] +d=0$

Parameterform: [mm] $\vektor{x_1 \\ x_2 \\ x_3}=\vektor{a_1 \\ a_2 \\ a_3}+r*\vektor{b_1 \\ b_2 \\ b_3}+s*\vektor{c_1 \\ c_2 \\ c_3}$ [/mm]

die Parameterform zerlegst du in 3 Zeilen, [mm] $x_1=a_1 +r*b_1 +t*c_1~,x_2=...,~x_3=...$ [/mm] die du in die Koordinatenform einsetzt.
Daraus wird dann eine Funktion s(t) oder t(s) (kannst du dir raussuchen) und in die Parameterform wieder einsetzten.

Den Schluss darfst du selber rausfinden ;)

Gruß
Slartibartfast

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]