matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSchmidt'sches Orthonormieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Schmidt'sches Orthonormieren
Schmidt'sches Orthonormieren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schmidt'sches Orthonormieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 09.02.2009
Autor: kuemmelsche

Hallo zusammen,

den Beweis zum Verfahren hab ich verstanden.

Ich habe ein Problem damit, mir Vorzustellen, was genau dabei passiert.

Das normieren ist kein Problem, aber das Orthogonalisieren.

Es heißt ja nach Induktion [mm] b_{k+1}=a_{k+1}-\summe_{i=1}^{k}e_i, [/mm] mit [mm] e_i [/mm] bereits orthonormierte Vektoren, [mm] b_{k+1} [/mm] der nächste orthogonalisierte Vektor und [mm] a_{k+1} [/mm] der zu orthonormierende Vektor.

Ist [mm] e_i [/mm] die Standartbasis, dann verstehe ich, das jeweils vom i-ten Eintrag in [mm] a_{k+1} [/mm] jeweis [mm] e_i [/mm] abgezogen wird.

Geometrisch soll das bedeuten, dass das Lot gefällt wird, aber iwie kann ich mir nicht so recht vorstellen, was das Skalarprodukt in diesem Fall genau macht.

Hat jemand für mich vllt eine schöne Erklärung? Es sind immer soche Beweise, inden am Anfang schon die Aussage steht, und im Beweis nur gezeigt wird, dass das auch stimmt, bei denen mich die eigentliche Idee dahinter sehr interessiert. Vllt weiß jemand ja, wie man auf diese Formel kommt, und nicht als Begründung hat: "weils eben geht".
Danke schonmal!

lg Kai

        
Bezug
Schmidt'sches Orthonormieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Di 10.02.2009
Autor: Marcel

Hallo,

> Hallo zusammen,
>  
> den Beweis zum Verfahren hab ich verstanden.
>  
> Ich habe ein Problem damit, mir Vorzustellen, was genau
> dabei passiert.
>  
> Das normieren ist kein Problem, aber das Orthogonalisieren.
>
> Es heißt ja nach Induktion
> [mm]b_{k+1}=a_{k+1}-\summe_{i=1}^{k}e_i,[/mm] mit [mm]e_i[/mm]
> bereits orthonormierte Vektoren, [mm]b_{k+1}[/mm] der nächste
> orthogonalisierte Vektor und [mm]a_{k+1}[/mm] der zu
> orthonormierende Vektor.
>  
> Ist [mm]e_i[/mm] die Standartbasis, dann verstehe ich, das jeweils
> vom i-ten Eintrag in [mm]a_{k+1}[/mm] jeweis [mm]e_i[/mm]
> abgezogen wird.
>  
> Geometrisch soll das bedeuten, dass das Lot gefällt wird,
> aber iwie kann ich mir nicht so recht vorstellen, was das
> Skalarprodukt in diesem Fall genau macht.
>  
> Hat jemand für mich vllt eine schöne Erklärung? Es sind
> immer soche Beweise, inden am Anfang schon die Aussage
> steht, und im Beweis nur gezeigt wird, dass das auch
> stimmt, bei denen mich die eigentliche Idee dahinter sehr
> interessiert. Vllt weiß jemand ja, wie man auf diese Formel
> kommt, und nicht als Begründung hat: "weils eben geht".
> Danke schonmal!

naja, ich habe jetzt einfach mal nach ggf. interessanten Links gesucht:
[mm] $\bullet$[/mm]  []Link1

[mm] $\bullet$[/mm]  []Link2

schienen mir ziemlich passend, oder wenigstens etwas hilfreich, bzgl. Deiner Frage zu sein.

P.S.:
Es gibt hierbei zwei Stellen, wo das Skalarprodukt eine Rolle spielt:
1.) Die Norm wird vom Skalarprodukt induziert (erzeugt)
2.) Mithilfe des Skalarproduktes wird in einem mit einem Skalarprodukt versehenen Vektorraum überhaupt von erst von "lotrecht" bzw. orthogonal gesprochen

Das sind jedenfalls zwei technische Dinge, wo es eine Rolle spielt. Und eine weitere technische Sache ist eben, dass bei dieser Vorgehensweise im Wesentlichen die Eigenschaften eines Skalarproduktes ausgenutzt werden können. Aber das ist auch wieder eher eine technische Sache...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]