matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSchlecht konvergente Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Schlecht konvergente Reihe
Schlecht konvergente Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schlecht konvergente Reihe: Grenzwert ausrechnen
Status: (Frage) überfällig Status 
Datum: 20:07 So 04.03.2007
Autor: Tiffany

Folgende Aufgabe ist zum Verzweifeln:

Berechne den Reihenwert $R = [mm] \summe_{k=1}^{\infty}\bruch{1}{k * \ln (k+1)^2}$ [/mm] auf 6 Dezimalstellen genau!

Klingt leicht, aber die Reihe konvergiert extrem langsam. Selbst wenn ich eine Million Glieder addiere hab ich erst zwei Stellen. Was tun?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schlecht konvergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Mo 05.03.2007
Autor: wauwau

Wohin gehört das Quadrat zum Logarithmus oder zum Argument des Log´s ?

Bezug
                
Bezug
Schlecht konvergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Mo 05.03.2007
Autor: Tiffany

Gemeint ist das Quadrat des Logarithmus, also [mm] $(\ln(x+1))^2$. [/mm]
Kann man bei Reihen nicht durch Tricks die Konvergenz beschleunigen?

MfG,
Tiffany

Bezug
        
Bezug
Schlecht konvergente Reihe: Einige Werte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Di 06.03.2007
Autor: Tiffany

Ich habe bisher mit dem Rechner verschiedene Summenwerte für die ersten n Glieder ausgerechnet:

n = 100000   R = 3.30087668
n = 200000   R = 3.30580912
n = 300000   R = 3.30844307
n = 500000   R = 3.31152975
n = 700000   R = 3.31343490
n = 1000000  R = 3.31535312
n = 1500000  R = 3.31741687

Für mich sieht das aus, als würde es immer gleichmäßig weiterwachsen. Konvergiert denn das überhaupt?!

Bezug
                
Bezug
Schlecht konvergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mi 07.03.2007
Autor: wauwau

Aso nach dem Cauchy`chen Verdichtungskriterium http://de.wikipedia.org/wiki/Cauchysches_Verdichtungskriterium ist die Reihe konvergent - meines Erachtens

Bezug
                
Bezug
Schlecht konvergente Reihe: Konvergenzbeschleunigung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Mi 07.03.2007
Autor: Kay_S

Probiere folgende Methode der Konvergenzbeschleunigung:

Definiere die Partialsumme [mm] $S_n [/mm] := [mm] \summe_{k=1}^{2^n} \bruch{1}{k*\ln(k+1)^2}$, [/mm] wobei $n$ noch von praktikabler Größe ist. Jetzt betrachte die Ersatzfolge

[mm] $R_n [/mm] := [mm] (n+1)*S_{n+1} [/mm] - [mm] n*S_n$ [/mm]

Es gilt [mm] $R_n \rightarrow [/mm] R$, die Ersatzfolge konvergiert aber erheblich schneller gegen den fraglichen Grenzwert als die Originalreihe.

Beispiel:

n = 10, k = 1024
[mm] $S_{10} [/mm] = 3.24348039 [mm] \quad S_{11} [/mm] = 3.25658725$
[mm] $\Rightarrow R_{10} [/mm] = [mm] \underline{3.387}65590$ [/mm]

n = 15, k = 32768
[mm] $S_{15} [/mm] = 3.29155605 [mm] \quad S_{16} [/mm] = 3.29756717$
[mm] $\Rightarrow R_{15} [/mm] = [mm] \underline{3.38773}405$ [/mm]

n = 20, k = 1048576
[mm] $S_{20} [/mm] = 3.31560078 [mm] \quad S_{21} [/mm] =  3.31903577$
[mm] $\Rightarrow R_{20} [/mm] = [mm] \underline{3.3877355}0$ [/mm]

Also R = 3.3877355... . Es reichen also ca. zwei Millionen Glieder und Du bekommst etwa 8 Stellen Genauigkeit.

Gruß,
Kay

Bezug
        
Bezug
Schlecht konvergente Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 08.03.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]