matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraSchlangenlemma Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Schlangenlemma Beweis
Schlangenlemma Beweis < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schlangenlemma Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Fr 06.09.2013
Autor: Teufel

Hi!

Ich sitze jetzt schon eine Weile am Beweis des Schlangenlemmas.

[Dateianhang nicht öffentlich]

Ich scheitere jedoch daran, dass die induzierte Sequenz an der Stelle [mm] $\ker(b)$ [/mm] exakt ist. Ich hab dann im Internet rumgeschaut und in den Beweisen wurde damit argumentiert, dass $g [mm] \circ [/mm] f=0$ sei. Aber ich sehe irgendwie nicht, warum das so sein sollte. Kann mir das bitte jemand erklären?

Vielen Dank!

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Schlangenlemma Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mo 09.09.2013
Autor: tobit09

Hi Teufel!


> [Dateianhang nicht öffentlich]
>  
> Ich scheitere jedoch daran, dass die induzierte Sequenz an
> der Stelle [mm]\ker(b)[/mm] exakt ist. Ich hab dann im Internet
> rumgeschaut und in den Beweisen wurde damit argumentiert,
> dass [mm]g \circ f=0[/mm] sei. Aber ich sehe irgendwie nicht, warum
> das so sein sollte.

Verstehe ich richtig, dass du wissen möchtest, warum [mm] $g\circ [/mm] f=0$ gilt?

Das liegt an der Exaktheit der "oberen Ursprungssequenz" an der Stelle $B$:

Sei [mm] $a\in [/mm] A$. Zu zeigen ist [mm] $(g\circ [/mm] f)(a)=0(a)$, d.h. $g(f(a))=0$. Da [mm] $f(a)\in\operatorname{Bild}(f)=\operatorname{Kern}(g)$, [/mm] gilt in der Tat $g(f(a))=0$.


Viele Grüße
Tobias

Bezug
                
Bezug
Schlangenlemma Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Mo 09.09.2013
Autor: Teufel

Hi tobit09!

Ach verdammt, da hab ich echt nicht drauf geachtet. Dabei war es so einfach. Vielen Dank für den Anstoß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]