Scheitelform und Normalform < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | Die Leistung P einer Turbine hängt von der Drehzahl n ab. Die Zuordnungsvorschrift P = 300n - 0,8n² gibt die Leistung der Turbine in der Einheit Watt (kurz:W) an.
a) Bei welcher Drehzahl sollte die Turbine betrieben werden?
b) Wie schnell muss sich die Turbine mindestens drehen, damit sie eine Leistung von 10 000 W erziehlt? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.Ich weiß nicht wie ich die Antwort a) herausfinden kann da ich nicht weiß ab wie viel Watt die Turbine anfängt sich zu drehen....außerdem sieht das Schaubild sehr merkwürdig aus (eine "senkrechte Gerade "). Ich habe lange versucht diese Aufgabe zu lösen doch ich komme nicht weiter!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:42 Di 12.02.2008 | Autor: | leduart |
Hallo Matheungenie
1. n=0 heisst sie dreht sich nicht , da fängt das also an, und es ist gleichzeitig die eine Nullstelle deiner Parabel.
Da du auch schreiben kannst P=n*(300-0,8n) ist die andere Nullstelle da, wo die Klammer 0 ist.
Na ja, und wo liegt der x bzw. n-Wert des Scheitels einer Parabel, von der man 2 Nullstellen kennt?
andere Möglichkeit den Scheitel, und damit den höchsten Punkt zu finden ist es das in die Scheitelform zu bringen.
Wenn dirs mit P und n zu ungewohnt ist schreib einfach statt P y und statt n x.
Gruss leduart
|
|
|
|
|
Hallo
Also zur Aufgabe a:
Bei dieser Fragestellung ist immer nach dem Maximum eines Graphen gefragt. In diesem Fall ist es der Scheitelpunkt der Parabel. Das die Funktion bei dir aussieht wie eine Gerade liegt einfach daran, dass der Scheitelpunkt bei über 20000 liegt.
Zur Lösung dieser Aufgabe musst du also den Scheitelpunkt oder zumindest die n-Koordinate des Scheitelpunktes ausrechnen.
$ P = [mm] -0.8n^2 [/mm] + 300n $
$ [mm] NST_1: [/mm] 0 = n(-0.8n + 300) => [mm] n_1 [/mm] = 0 $
$ [mm] NST_2: [/mm] 0 = -0.8n + 300 => [mm] n_2 [/mm] = 375 $
$ Scheitelform: $
$ P = [mm] -(0.8n^2 [/mm] - 300n) $
$ P = [mm] -(0.8n^2-2*\wurzel{0.8}n*167,7 [/mm] + 28123.29 - 28123.29) $
$ P = [mm] -((\wurzel{0.8}n [/mm] - [mm] 167.7)^2 [/mm] -28123.29) $
$ P = [mm] -(\wurzel{0.8}n [/mm] - [mm] 167.7)^2 [/mm] +28123.29 $
=> Die Drehzahl ist bei 167,7 ideal.
MfG Michael
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:42 Di 12.02.2008 | Autor: | Zneques |
Hallo,
beim Umrechnen in die Scheitelpunktform muss der gesammte 1 Koeffizient ausgeklammert werden, ansonsten kann man den S.-punkt nicht so leicht ablesen.
P [mm] =-0,8n^2+300n= -0,8(n^2-375n)=-0,8(n^2-2*187,5n)
[/mm]
[mm] =-0,8(n^2-2*187,5n+187,5^2-187,5^2)=-0,8((n-187,5)^2-187,5^2)
[/mm]
[mm] =-0,8(n-187,5)^2+28125
[/mm]
Der Scheitelpunkt ist S(187,5|28125).
Ciao.
|
|
|
|