matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchätzer bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Schätzer bestimmen
Schätzer bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer bestimmen: Korrektur eines Lösungsvorschl
Status: (Frage) überfällig Status 
Datum: 16:54 So 15.03.2009
Autor: Pollux

allo,

ich komme bei einer "Rechenaufgabe" nicht weiter und hoffe ihr könnt mir weiterhelfen. Zunächst zur Notation:
Gegeben sei eine Folge linearer Modelle [mm] Y_n [/mm] = [mm] x_n^T \beta [/mm] + [mm] \epsilon_n [/mm] mit [mm] x_n ,\beta\in \IR^p. \beta [/mm] sei der Parametervektor, [mm] \epsilon_n [/mm] der Fehlerterm mit [mm] Var(\epsilon_n)=\Sigma_n [/mm] , [mm] Y_n [/mm] die abhängige Variable.
Außerdem sei [mm] \Sigma_{n+1}=\pmat{\Sigma_n & \sigma_n \\ \sigma_n^T & \sigma_{n+1}} [/mm] und [mm] X_n^T [/mm] = [mm] (x_1,...,x_n). [/mm]
Es soll nun [mm] E((Y_{n+1} [/mm] - Z [mm] )^2) [/mm] unter der Bedingung [mm] E(Y_{n+1}-Z) [/mm] = 0 minimiert werden, wobei [mm] Z=(Y_1,...,Y_n)*b [/mm] und [mm] b\in \IR^n [/mm] entsprechend gewählt werden soll.


Soviel zur Aufgabe!
Die Zielfunktion kann man einfach als Varianz umschreiben, dann muss nur noch folgendes minimiert werden:
[mm] E((Y_{n+1}-Z)^2)=Var(Y_{n+1}-Z)=Var((-b^T,1)(Y_1 ,...,Y_n [/mm] , [mm] Y_{n+1} )^T) [/mm] = [mm] (-b^T,1)\Sigma_{n+1} (-b^T,1)^T [/mm] = [mm] b^T\Sigma_n b-2*\sigma_n^T*b+\sigma_{n+1} [/mm]
Notwendige Bedingung: [mm] {\partial E((Y_{n+1}-Z)^2)}/{\partial b} [/mm] = [mm] 2*\Sigma_n*b-2*\sigma_n [/mm] = 0 => [mm] b=\Sigma_n^{-1}*\sigma_n [/mm]
[mm] \fedoff [/mm]
Meine Lösung ist also: [mm] Y^^=(Y_1,...,Y_n) *\Sigma_n^{-1} *\sigma_n [/mm] .

Als Lösung sollte jedoch folgender Schätzer herauskommen, der bis auf den Anfang, keine Ähnlichkeit mit meiner Lösung hat:
[mm] (Y_1,...,Y_n)(\Sigma_n^{-1} \sigma_n [/mm] + [mm] \Sigma_n^{-1} X_n ((X_n^T \Sigma_n^{-1} X_n)^{-1}(x_{n+1}-X_n^T \Sigma_n^{-1} \sigma_n) [/mm]


Könnt ihr mir sagen, was ich falsch gemacht habe? Vielleicht könnt ihr das auch mal durchrechnen? Eventuell muss man auch Optimierung mit Nebenbedingung anwenden (Stichwort:Lagrange)!?

Danke schön und noch schönes Wochenende!




        
Bezug
Schätzer bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 17.03.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]