matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSatz von Fubini
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz von Fubini
Satz von Fubini < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Fubini: Warum eigentlich?
Status: (Frage) beantwortet Status 
Datum: 08:55 Fr 11.12.2009
Autor: derdickeduke

Aufgabe
Es sei f: [mm] [0,M]x[0,\infty) \to \IR [/mm] gegeben durch [mm] f(x,t)=sin(x)e^{-xt}, [/mm] wobei M > 0
c) Zeigen Sie, dass [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm]
d) Zeigen Sie mithilfe des Satzes von Fubini, dass [mm] \integral_{0}^{\infty}{\bruch{sin(x)}{x} dx} [/mm] existiert und gleich [mm] \pi/2 [/mm] ist.

Hallo zusammen,
Aufgabe c) hab ich gelöst, das war nicht schwer. Ich hab sie nur hingeschrieben, weil ich dachte, dass sie für d) von Bedeutung sein könnte.
Meine Frage lautet:
Mir ist klar, dass [mm] \integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}=\pi/2, [/mm] aber was soll der Satz von Fubini da?
Vielen Dank im Vorraus!

        
Bezug
Satz von Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Fr 11.12.2009
Autor: fred97


> Es sei f: [mm][0,M]x[0,\infty) \to \IR[/mm] gegeben durch
> [mm]f(x,t)=sin(x)e^{-xt},[/mm] wobei M > 0
>  c) Zeigen Sie, dass
> [mm]\integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx}[/mm]
>  
> d) Zeigen Sie mithilfe des Satzes von Fubini, dass
> [mm]\integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}[/mm] existiert und
> gleich [mm]\pi/2[/mm] ist.
>  Hallo zusammen,
>  Aufgabe c) hab ich gelöst, das war nicht schwer. Ich hab
> sie nur hingeschrieben, weil ich dachte, dass sie für d)
> von Bedeutung sein könnte.
>  Meine Frage lautet:
>  Mir ist klar, dass
> [mm]\integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}=\pi/2,[/mm] aber
> was soll der Satz von Fubini da?


Einfach mal probieren:

Du hast:  $ [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm] $

Nach Fubini: [mm] $\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm] = [mm] \integral_{0}^{\infty}{\integral_{0}^{M}{f(x,t) dt}\ dx}$ [/mm]

Das rechte Integral berechnen und dann $M [mm] \to \infty$ [/mm]

FRED


>  Vielen Dank im Vorraus!


Bezug
                
Bezug
Satz von Fubini: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:54 Fr 11.12.2009
Autor: derdickeduke

Danke schonmal für deine schnelle Antwort Fred!
Da komme ich nur leider auch nicht hin, oder ich hab mich verrechnet, das kann man ja nie ausschließen.
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\bruch{sin(x)}{x}}dx= [/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\integral_{0}^{\infty}{sin(x)e^{-xt}dt}dx}\overbrace{=}^{Fubini}\limes_{M\rightarrow\infty}\integral_{0}^{\infty}{\integral_{0}^{M}{sin(x)e^{-xt}dt}dx}= [/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}{-\bruch{sin(x)}{e^{Mt}}-\bruch{cos(M)}{e^{Mt}t^2}+\bruch{1}{t^2}dt}= [/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}{-\bruch{sin(x)}{e^{Mt}}}-\integral_{0}^{\infty}{\bruch{cos(M)}{e^{Mt}t^2}}+\integral_{0}^{\infty}{\bruch{1}{t^2}dt}= [/mm]
Und ab dann wird's unberechenbar, denn z.B. [mm] \limes_{M\rightarrow\infty}sin(M) [/mm] ist doch völlig uninterpretierbar.

Bezug
                        
Bezug
Satz von Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Sa 12.12.2009
Autor: Disap

Du hast geschrieben

$ [mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\integral_{0}^{\infty}{sin(x)e^{-xt}dt}dx}\overbrace{=}^{Fubini}\limes_{M\rightarrow\infty}\integral_{0}^{\infty}{\integral_{0}^{M}{sin(x)e^{-xt}dt}dx}= [/mm] $

Und nun anders geschrieben

[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}sin(x){\integral_{0}^{M}{e^{-xt}dt}dx} [/mm]

Was ist die Stammfunktion von [mm] e^{-xt} [/mm] nach t integriert? Eine Mögliche ist

[mm] $-e^{- t*x} [/mm] /x$

da steht [mm] sin(\red{x}), [/mm] integrieren wirst du aber erst einmal nach t.

PS: Ich bin davon ausgegangen, dass weil im Ursprungsthread stand
$ [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}$, [/mm]

dass du jetzt zuerst nach t integrierst und nicht nach x.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]