matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSatz v. Picard-Lindelöf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Satz v. Picard-Lindelöf
Satz v. Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz v. Picard-Lindelöf: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:18 Di 04.03.2008
Autor: Crispy

Hallo, ich verstehe einen Beweisschritt nicht im Beweis des Satzes von Picard-Lindelöf (globale Version).

Sei die gewichtete Maximums-Metrik wie folgt definiert:

[mm] d(x,y)= \underset{t \in I}{\max}\,e^{-2L \left| t - t_0 \right|} \left| x(t)-y(t) \right| [/mm]

Es gilt zu zeigen: [mm] d(Tx,Ty) \le \bruch{1}{2} d(x,y) [/mm]
(Also T ist Kontraktions-Operator)

[mm] Tx(t)-Ty(t) = \integral_{t_0}^{t} \left[ f(s,x(s))-f(s,y(s)) \right] \, ds [/mm]

also gilt für [mm] t \ge t_0 [/mm]
[mm] \left| Tx(t)-Ty(t) \right| \le \integral_{t_0}^{t} \left| x(s)-y(s) \right| \, ds [/mm]
Folglich:
[mm]\left| Tx(t)-Ty(t) \right| \,e^{-2L \left| t - t_0 \right|} \le[/mm]
[mm] \le d(x,y) \, L \, \integral_{t_0}^{t} e^{-2L \left| t - t_0 \right|} \, e^{2L \left| s - t_0 \right|} \, ds =[/mm]
[mm] = d(x,y) \, L \, \integral_{t_0}^{t} e^{-2L (t-s)} \, ds \le d(x,y) \, L \, \integral_{0}^{ \infty} e^{-2L u} \, du =[/mm]
[mm] = \bruch{1}{2} d(x,y) [/mm]

Was mir unklar ist ist der Schritt von
[mm]\left| Tx(t)-Ty(t) \right| \,e^{-2L \left| t - t_0 \right|} \le[/mm]
zu
[mm] \le d(x,y) \, L \, \integral_{t_0}^{t} e^{-2L \left| t - t_0 \right|} \, e^{2L \left| s - t_0 \right|} \, ds[/mm]

Es wäre nett, wenn mir hier jemand auf die Sprünge helfen könnte.

Vielen Dank,
Crispy

        
Bezug
Satz v. Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Do 06.03.2008
Autor: MatthiasKr

Hi,
> Hallo, ich verstehe einen Beweisschritt nicht im Beweis des
> Satzes von Picard-Lindelöf (globale Version).
>  
> Sei die gewichtete Maximums-Metrik wie folgt definiert:
>  
> [mm]d(x,y)= \underset{t \in I}{\max}\,e^{-2L \left| t - t_0 \right|} \left| x(t)-y(t) \right|[/mm]
>
> Es gilt zu zeigen: [mm]d(Tx,Ty) \le \bruch{1}{2} d(x,y)[/mm]
>  (Also
> T ist Kontraktions-Operator)
>  
> [mm]Tx(t)-Ty(t) = \integral_{t_0}^{t} \left[ f(s,x(s))-f(s,y(s)) \right] \, ds[/mm]
>  
> also gilt für [mm]t \ge t_0[/mm]
>  [mm]\left| Tx(t)-Ty(t) \right| \le \integral_{t_0}^{t} \left| x(s)-y(s) \right| \, ds[/mm]
>  
> Folglich:
>  [mm]\left| Tx(t)-Ty(t) \right| \,e^{-2L \left| t - t_0 \right|} \le[/mm]
>  
> [mm]\le d(x,y) \, L \, \integral_{t_0}^{t} e^{-2L \left| t - t_0 \right|} \, e^{2L \left| s - t_0 \right|} \, ds =[/mm]
>  
> [mm]= d(x,y) \, L \, \integral_{t_0}^{t} e^{-2L (t-s)} \, ds \le d(x,y) \, L \, \integral_{0}^{ \infty} e^{-2L u} \, du =[/mm]
>  
> [mm]= \bruch{1}{2} d(x,y)[/mm]
>  
> Was mir unklar ist ist der Schritt von
>  [mm]\left| Tx(t)-Ty(t) \right| \,e^{-2L \left| t - t_0 \right|} \le[/mm]
>  
> zu
>  [mm]\le d(x,y) \, L \, \integral_{t_0}^{t} e^{-2L \left| t - t_0 \right|} \, e^{2L \left| s - t_0 \right|} \, ds[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  

muss zugeben, ich musste auch eine weile dran knobeln (und externe informationsquellen suchen...;-)), um diesen schritt zu verstehen. Ich versuche es dir zu erklaeren:

$\left| Tx(t)-Ty(t) \right| \,e^{-2L \left| t - t_0 \right|$

ist nach definition und obiger abschaetzung

$\le L  e^{-2L | t - t_0|} \integral_{t_0}^{t} \left| x(s)-y(s) \right| \, ds$

jetzt kommt der casus knaxus: nach definition von $d(x,y)$ (erste formel bei dir) gilt:

$\left| x(s)-y(s) \right|\le e^{2L | s - t_0|} d(x,y)$ .

Klar? Wenn du das einsetzt, erhaeltst du die naechste Zeile in deinem skript.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]