matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeSatz: Beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Satz: Beweis
Satz: Beweis < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz: Beweis: kann denn das richtig sein?
Status: (Frage) überfällig Status 
Datum: 20:44 Sa 03.02.2007
Autor: viktory_hh

Aufgabe
Der Satz sagt aus:
sei [mm] \beta \in [/mm] IR und z [mm] \in IR^n. [/mm] Die Gleichung
[mm] x^T(I-\beta [/mm] z [mm] z^T)x=0 [/mm]
hat 2(n-1) Lösungen [mm] x\not=0 [/mm] wenn [mm] M=(I-\beta [/mm] z [mm] z^T) [/mm] indefinit ist
und eine Lösung wenn M positiv semidefinit ist.

Meine Frage ist: ist es richtig, was in dem Satz behauptet wird. Meiner Meinung nach kann es garn nicht zutreffen. Denn wenn die Matrix  symmetrisch ist, können wir die Eigenvektoren ortogonal wählen. Der eine EV wäre dann z. Die anderen alle senkrecht dazu. Wenn dann alle Eigenwerte ungleich Null wären, und deswegen die Matrix regulär, gäbe es in diesem Fall keinen Vektor der auf Null abgebildet wird.
Was jetzt noch bleibt wäre der Fall, wo der Vektor auf einen zu ihm senkrechten Vektor abgebildet wird. In diesem Fall hätte das Gleichungssystem ebenfalls eine nicht triviale Lösung. Das kann aberr hier nicht passieren. Denn jeden Vektor könnten wir als Linearkombination der Eigenvktoren darstellen und das Bild könnte niemals senkrecht zum Urbild werden.

Sehe ich das ganze richtig?
Ist der oben angegebene Satz falsch?

Danke Euch allen

die Frage wurde nur hier gestellt. Habe keine anderen Matheacounts. Der hier ist sowieso der beste :-)

        
Bezug
Satz: Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 05.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]