matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeSaft-Mischungsverhältnis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Saft-Mischungsverhältnis
Saft-Mischungsverhältnis < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Saft-Mischungsverhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Fr 21.08.2009
Autor: rabilein1

Aufgabe
Aus den drei Säften A, B und C soll durch Mischung ein neuer Saft entstehen, der 10% Apfelsaft, 8% Birnensaft und 82% Orangensaft enthält.

A= 12% Apfelsaft -  7 % Birnensaft - 81% Orangensaft

B=  9% Apfelsaft - 10 % Birnensaft - 81% Orangensaft

C=  x% Apfelsaft -  7 % Birnensaft - y % Orangensaft

Frage:
Wie viel Prozent Apfelsaft darf C maximal enthalten, damit man aus A, B und C den gewünschten Saft mixen kann?

(P.S. Das war so eine Aufgabe aus dem "Mathe-Leistungskurs")

Meine Überlegung ist die:
Da in C eine Maximalmenge an Apfelsaft vorkommen soll, darf entweder A oder B in der Mischung gar nicht vorhanden sein.  

Frage: Ist diese Ausgangs-Überlegung "Pfiffig" oder "Falsch"?


Es sei a: Anteile von A  /  b: Anteile von B / c: Anteile von C


Sagen wir also: B sei gleich NULL

Dann ist

7a + 7c = 8
1a + 1c = 1   [mm] \Rightarrow [/mm]  7a + 7c = 7

[mm] \Rightarrow [/mm]  Das ist ein Widerspruch. Also kann B nicht NULL sein, und somit muss A gleich NULL sein.

Wenn A gleich NULL ist, dann gilt:

10b + 7c = 8
1b + 1c = 1

Aus obigem Gleichungssystem folgt:  [mm] c=\bruch{2}{3} [/mm] und [mm] b=\bruch{1}{3} [/mm]

Die Apfelsaft-Anteile sind:
2a + 9b + xc = 10   (wobei x der gesuchte Maximalwert ist)

Für a=0 / [mm] b=\bruch{1}{3} [/mm] /  [mm] c=\bruch{2}{3} [/mm] ergibt sich x=10.5

Antwort:
Der Saft C darf höchstens 10.5 % Apfelsaft enthalten. Andernfalls kann man aus den drei Säften A, B und C keinen Saft mit 10% Apfelsaft, 8% Birnensaft und 82% Orangensaft mixen.

Sind meine Überlegungen so in Ordnung ?  







        
Bezug
Saft-Mischungsverhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Fr 21.08.2009
Autor: leduart

Hallo
die ueberlegung ist richtig, denn du musst den saft weglassen, der am meisten AS enthaelt. (das ginge aber nicht mehr, wenn y schon festlaege. so bestimmt x das y.
Gruss leduart

Bezug
        
Bezug
Saft-Mischungsverhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Fr 21.08.2009
Autor: adlerbob

Hier ist noch mal teoretische Begründung:

[mm] \begin{cases} 12a + 9b +xc = 10 \\ 7a + 10b +7c =8 \\ 81a + 81b + (93-x)c = 82 \\ a + b + c = 1 \end{cases} [/mm]

4.te Gleichung in zweiten einsetzten bekommt man: 3b=1
3b=1 und 4.te Gl. in 3.te reinsetzen bekommt man: (12-x)c=1

da aber c nicht negativ sein kann, muss x=12- [mm] \varepsilon [/mm] sein, wobe [mm] \varepsilon [/mm] > 0

Also muss c= [mm] 1/\varepsilon [/mm] sein.
daraus folgt [mm] a=\bruch{2\varepsilon -3}{3}. [/mm]
a kann aber auch nicht negativ sein, also muss [mm] \varepsilon \ge [/mm] 3/2 sein.
Da aber x maxsimal sein soll, bekommen wir:
[mm] \varepsilon [/mm] =3/2  [mm] \Rightarrow [/mm] x=10,5



Bezug
        
Bezug
Saft-Mischungsverhältnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:09 Mo 24.08.2009
Autor: statler

Guten Morgen!

> Aus den drei Säften A, B und C soll durch Mischung ein
> neuer Saft entstehen, der 10% Apfelsaft, 8% Birnensaft und
> 82% Orangensaft enthält.
>  
> A= 12% Apfelsaft -  7 % Birnensaft - 81% Orangensaft
>  
> B=  9% Apfelsaft - 10 % Birnensaft - 81% Orangensaft
>  
> C=  x% Apfelsaft -  7 % Birnensaft - y % Orangensaft
>  
> Frage:
>  Wie viel Prozent Apfelsaft darf C maximal enthalten, damit
> man aus A, B und C den gewünschten Saft mixen kann?
>  
> (P.S. Das war so eine Aufgabe aus dem
> "Mathe-Leistungskurs")
>
> Meine Überlegung ist die:
>  Da in C eine Maximalmenge an Apfelsaft vorkommen soll,
> darf entweder A oder B in der Mischung gar nicht vorhanden
> sein.  
>
> Frage: Ist diese Ausgangs-Überlegung "Pfiffig" oder
> "Falsch"?

Weder - noch, sie ist unvollständig, weil nicht begründet.

Wäre die Zielmischung 11/8/81, dann würde C nicht gebraucht und x könnte auch 100 % sein, also ist die Begründung deiner Überlegung nicht völlig trivial.

Ich hätte mir wahrscheinlich die Vorüberlegung geschenkt und wäre mit einem allgemeinen Ansatz auf a = [mm] \bruch{\bruch{2}{3}x - 7}{x - 12} [/mm] gekommen, wobei 0 [mm] \le [/mm] a [mm] \le \bruch{2}{3} [/mm] und 0 [mm] \le [/mm] x [mm] \le [/mm] 100 sein muß. Das ergibt für x das Intervall x [mm] \in [/mm] [0, 10,5].

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Saft-Mischungsverhältnis: Das Karstadt-Problem
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:27 Di 25.08.2009
Autor: rabilein1


> Ich wäre mit einem allgemeinen Ansatz auf a = [mm]\bruch{\bruch{2}{3}x - 7}{x - 12}[/mm] gekommen,
> wobei 0 [mm]\le[/mm] a [mm]\le \bruch{2}{3}[/mm] und 0 [mm]\le[/mm] x [mm]\le[/mm] 100 sein muß.
> Das ergibt für x das Intervall x [mm]\in[/mm] [0, 10,5].

Sicherlich gibt es hier unterschiedliche Ansätze.

Die Hauptschwierigkeit bei so einer Art von Aufgabe liegt jedoch darin, dass sie schnell mal zu einem "Karstadt-Problem" werden kann.

(Bei Karstadt gibt es 10 verschiedene Säfte zu kaufen, die alle Apfel, Birne und Orange in unterschiedlicher Mischung enthalten. Und nun soll man aus all diesen Säften eine Mischung mit 10% Apfelsaft, 8% Birnensaft und 82% Orangensaft herstellen. Die Frage lautet dann: Nennen Sie 3 verschiedene Möglichkeiten, wie man diese Säfte mixen kann. Im Endeffekt gibt es jedoch nahezu unendlich viele Möglichkeiten )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]