matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikSCHULAUFGABE
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - SCHULAUFGABE
SCHULAUFGABE < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

SCHULAUFGABE: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:19 Do 02.06.2005
Autor: NECO

.
        
Bezug
SCHULAUFGABE: Ansätze
Status: (Antwort) fertig Status 
Datum: 15:31 Do 02.06.2005
Autor: Roadrunner

Hallo Neco!


Nennen wir mal die gesuchte Anzahl der befragten Leute: $x$

Dann blieben in Deutschland ein Drittel davon:
$d \ = \ [mm] \bruch{1}{3}*x$ [/mm]

Dann beträgt der Rest natürlich:
$R \ = \ x - d \ = \ x - [mm] \bruch{1}{3}*x [/mm] \ = \ [mm] \bruch{2}{3}*x$ [/mm]

Von diesem Rest $R$ fuhren 40% in den Süden:
$s \ = \ 0,40*R \ = \ 0,40 * [mm] \bruch{2}{3}*x [/mm] \ = \ [mm] \bruch{4}{10}*\bruch{2}{3}*x [/mm] \ = \ [mm] \bruch{4}{15}*x$ [/mm]

Von diesem Rest $R$ fuhren 20% in den Norden:
$n \ = \ 0,20*R \ = \ 0,20 * [mm] \bruch{2}{3}*x [/mm] \ = \ [mm] \bruch{2}{10}*\bruch{2}{3}*x [/mm] \ = \ [mm] \bruch{2}{15}*x$ [/mm]


In der Summe mit den "Meinungslosen" muß dies ja nun wieder genau unsere gesuchte Anzahl $x$ ergeben:

$d + s + n + 60 \ = \ x$

[mm] $\bruch{1}{3}*x [/mm] + [mm] \bruch{4}{15}*x [/mm] + [mm] \bruch{2}{15}*x [/mm] + 60 \ = \ x$

Und diese Gleichung kannst Du ja sicher nach $x$ auflösen, oder?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]