matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenRunge-Kutta-Formeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentialgleichungen" - Runge-Kutta-Formeln
Runge-Kutta-Formeln < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Runge-Kutta-Formeln: Verständnis
Status: (Frage) beantwortet Status 
Datum: 22:42 Mo 24.11.2008
Autor: jumape

Aufgabe
Man entwickle ein explizites Runge-Kutta-Verfahren der Ordnung 3 mit 3 Funktionsauswertungen pro Schritt.

Also wenn ich das richtig verstanden habe, gilt es folgendes Gleichungssystem zu erfüllen:
[mm] O(h^3)=\bruch{y(x+h)-y(x)}{h}-\summe_{i=0}^{n}\gamma_ik_i(x,y(x),h) [/mm]
Dabei ist
[mm] k_n(x,y,h)=f(x+\alpha_nh, y+h\summe_{j=0}^{n-1}\beta_{nj}k_j(x,y,h)) [/mm]

Hier ist als Tip angegeben man solle z(x+h) und [mm] k_i(x,y,h) [/mm] nach h entwickeln. Mit z bin ich ja noch gut klargekommen bei Taylor aber bei [mm] k_i [/mm] soll man da wirklich Taylor im Mehrdimensionalen anwenden? Oder habe ich da was falsch verstanden?

Es wäre nett wenn mir jemand helfen könnte.

        
Bezug
Runge-Kutta-Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Mo 24.11.2008
Autor: zahllos

Hallo,

ich fürchte du kommst um eine Taylorentwicklung von [mm] K_i [/mm] nach beiden Variablen nicht herum. Ich werde mal drüber nachdenken, ob es auch einfacher geht (denn die Herleitung der Runge-Kutta-Formeln ist immer ien ziemliches Durcheinander von Ableitunen) und melde mich morgen Abend wieder.


Bezug
        
Bezug
Runge-Kutta-Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Di 25.11.2008
Autor: zahllos

Hallo,

das RKF dritter Ordnung lässt sich folgendermaßen herleiten:

y(x+h) = [mm] y+hf+\frac{h^2}{2}(f_x+f_yf)+\frac{h^3}{6}(f_{xx}+2f_{xy}f+f_xf_y+f_{yy}f+f_y^2f)+O(h^4) [/mm]

(wobei ich rechts die Argumente weggelassen habe).

Nun setzt man:

[mm] K_1= [/mm] f(x; y)

[mm] K_2= f(x+ha_2; y+hb_{21}K_1) [/mm] = [mm] f+ha_2f_x+hb_{21}f_yf+h^2a_2^2f_{xx}+2h^2a_2b_{21}f_{xy}f+h^2b_{21}^2f_{yy}f^2+O(h^3) [/mm]

[mm] K_3=f(x+ha_3; y+hb_{31}K_1+hb_{32}K_2)=f+ha_3f_x+hb_{31}f_yf+hb_{32}f_yf+h^2a_2b_{32}f_xf_y+h^2b_{21}b_{32}f_y^2f+O(h^3) [/mm]

und: [mm] y(x+h)=y+h(g_1K_1+g_2K_2+g_3K_3)+O(h^4) [/mm]

setzt man für [mm] K_i [/mm] die obigen Ausdrücke ein und vergleicht die Koeffizienten vor den einzelnen partiellen Ableitungen erhält man folgendes Gleichungssystem:

[mm] g_1+g_2+g_3=1 [/mm]

[mm] a_2g_2+a_3g_3=\frac{1}{2} [/mm]

[mm] b_{21}g_2+b_{31}g_3+b_{32}g_3=\frac{1}{2} [/mm]

[mm] a_2^2g_2=\frac{1}{6} [/mm]

[mm] a_2b_{21}g_2=\frac{1}{6} [/mm]

[mm] a_2b_{32}g_3=\frac{1}{6} [/mm]

[mm] b_{21}^2g_2=\frac{1}{6} [/mm]

[mm] b_{21}b_{32}g_3=\frac{1}{6} [/mm]

Jede Lösung dieses Gleichungssystems legt ein Verfahren dritter Ordnung fest. Eine Lösung ist z.B.:

[mm] g_1=\frac{1}{6} [/mm]    

[mm] g_2=\frac{4}{6} [/mm]    

[mm] g_3=\frac{1}{6} [/mm]

[mm] a_1=\frac{1}{2} [/mm]    

[mm] a_2=1 [/mm]

[mm] b_{21}=\frac{1}{2} [/mm]    

[mm] b_{31}=-1 [/mm]    

[mm] b_{32}=2 [/mm]

die sog. "einfache Kutta-Regel".


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]