matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationRotationsinvarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Fourier-Transformation" - Rotationsinvarianz
Rotationsinvarianz < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsinvarianz: Rot-Invarianz von Deskriptoren
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:39 Mi 21.01.2015
Autor: manicpumpkin

Aufgabe
Berechnung der Rotationsinvarianz von Fourier Deskriptoren

Hallo,

für eine selbstgeschriebenes Programm ist es notwendig errechnete Fourier Deskriptoren (ausgehend von Polarkoordinaten) rotationsinvariant zu machen. Laut verschiedener Quellen bedeutet das, alle meine Deskriptoren mit den Phasenwinkel [mm] e^{i \alpha} [/mm] zu multiplizieren.

Laut eines Mitkommilitonen wird der Phasenwinkel für die FT durch [mm] \bruch{c_{1}}{|c_{1}|} [/mm] errechnet. Um nun meine FT rotationsinvariant zu machen, muss ich also alle meine Deskriptoren F(k) mit diesen Wert multiplizieren:

[mm] |c_{1}] [/mm] = [mm] \wurzel{c_{1}^2 + ic_{1}^2} [/mm]
[mm] \alpha [/mm] = [mm] \bruch{c_{1}}{|c_{1}|} [/mm] = [mm] \bruch{c_{1}}{|c_{1}|}+\bruch{c_{1}}{|c_{1}|}i [/mm]

F(k) = [mm] x_{k}\alpha [/mm] + i [mm] \alpha y_{k} [/mm]

Liege ich damit richtig, oder bringe ich da gerade etwas durcheinander?

Beste Grüße und Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Rotationsinvarianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:46 Mi 21.01.2015
Autor: chrisno

Doppelpost (sicher ein Versehen)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]