matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRotation um die y-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Rotation um die y-Achse
Rotation um die y-Achse < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation um die y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Mo 19.01.2009
Autor: lucana

Aufgabe
Berechnen Sie das Volumen des Rotationskörpers, der durch Drehung des Kreises [mm](x-2)^2 + y^2 = 1[/mm] um die y-Achse entsteht.

Um einen Körper um die y-Achse zu rotieren, muss ich ja zunächst [mm]f^{-1}[/mm] bilden.

Dabei komme ich auf [mm]f^{-1}(y) = 2 \pm \wurzel{1-y^2}[/mm]

Dann benötige ich die Integrationsgrenzen.
Also [mm]f^{-1}(y) = 0[/mm]. Dabei komme ich dann allerdings auf [mm]y^2=-3[/mm] und daher auf [mm]y=\pm\wurzel{-3}=\pm\wurzel{3}i[/mm]

Jedoch habe ich ein Problem mit der Integration der Funktion für die Rotation, da ich nicht wirklich weiß, was ich da mit komplexen Grenzen anfangen soll.

[mm]V=\pi\int_{-\wurzel{3}i}^{\wurzel{3}i}(2\pm\wurzel{1-y^2})^2=...=\pi(5y-\bruch{y^3}{3})\right|^{\wurzel{3}i}_{-\wurzel{3}i}\pm4\pi\bruch{(1-y^2)^{\bruch{3}{2}}}{\bruch{3}{2}}\right^{\wurzel{3}i}_{-\wurzel{3}i}[/mm]

(Anmerkung: Ich weiß leider nicht, wie man einen Strich für die Grenzen ziehen kann... Also bitte nicht wundern, dass da Zahlen "in der Luft" stehen...)

Die komplexen Zahlen fallen beim Einsetzen ja nicht weg (ungerade Potenzen von y). Aber wie kann ein Rotationskörper ein komplexes Volumen haben?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rotation um die y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Di 20.01.2009
Autor: MathePower

Hallo lucana,


[willkommenmr]


> Berechnen Sie das Volumen des Rotationskörpers, der durch
> Drehung des Kreises [mm](x-2)^2 + y^2 = 1[/mm] um die y-Achse
> entsteht.
>  Um einen Körper um die y-Achse zu rotieren, muss ich ja
> zunächst [mm]f^{-1}[/mm] bilden.
>  
> Dabei komme ich auf [mm]f^{-1}(y) = 2 \pm \wurzel{1-y^2}[/mm]
>  
> Dann benötige ich die Integrationsgrenzen.
>  Also [mm]f^{-1}(y) = 0[/mm]. Dabei komme ich dann allerdings auf
> [mm]y^2=-3[/mm] und daher auf [mm]y=\pm\wurzel{-3}=\pm\wurzel{3}i[/mm]


Die Integrationsgrenzen müssen Punkte auf dem Kreis sein.

Und y kann nur Werte  größer gleich 1 und kleiner gleich 1 annehmen.

Demzufolge lautet das Integral, das Du zu berechnen hast:

[mm]\pi\integral_{-1}^{1}{x^{2}\left(y\right) \ dy}[/mm]


>  
> Jedoch habe ich ein Problem mit der Integration der
> Funktion für die Rotation, da ich nicht wirklich weiß, was
> ich da mit komplexen Grenzen anfangen soll.
>  
> [mm]V=\pi\int_{-\wurzel{3}i}^{\wurzel{3}i}(2\pm\wurzel{1-y^2})^2=...=\pi(5y-\bruch{y^3}{3})\right|^{\wurzel{3}i}_{-\wurzel{3}i}\pm4\pi\bruch{(1-y^2)^{\bruch{3}{2}}}{\bruch{3}{2}}\right^{\wurzel{3}i}_{-\wurzel{3}i}[/mm]
>  
> (Anmerkung: Ich weiß leider nicht, wie man einen Strich für
> die Grenzen ziehen kann... Also bitte nicht wundern, dass
> da Zahlen "in der Luft" stehen...)
>  
> Die komplexen Zahlen fallen beim Einsetzen ja nicht weg
> (ungerade Potenzen von y). Aber wie kann ein
> Rotationskörper ein komplexes Volumen haben?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]