matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRinghomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ringhomomorphismus
Ringhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringhomomorphismus: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 16.04.2011
Autor: julmarie

Aufgabe
Seien R,S, T Ringe, f: R [mm] \to [/mm] S bzw. g: S [mm] \to [/mm] T Ringhomomorphismen und [mm] \delta [/mm] : [mm] R\to [/mm] S ein Ringhomomorphismus. Zeigen sie dass die folgenden Abbgildungen  ebenfalls Ringhomomorphismen sind:
a) id: R [mm] \to [/mm] R
b) [mm] \beta [/mm] := g [mm] \circ [/mm] f : R [mm] \to [/mm] T
c) [mm] \delta^{-1} [/mm] : S [mm] \to [/mm] R

ich habe leider Probleme mir der aufgabe b) da weiß ich nicht recht wie ich mit der verküpfung umgehen soll... kann mir da jemand helfen?

bei uns wird jetzt stark auf  die Form geachtet, deswegen meine Frage, könnte jemand meine Antwort sowohl auf Richtigkeit als auch auf Form überprüfen ?

also meine Antworten:

a) i)  id(1) = 1 , gilt denn eins geht auf eins
   ii)  id (xy) = xy = id (x) id(y)
   iii)   id (x+y) = x+y = id (x) + id (y)

Somit gilt, dass a) ein ringhomomorphismus ist

b)  ???? vielleicht kann mir ja jemand einen Tipp geben.,,
  
c)i)  [mm] \delta^{-1} [/mm] = [mm] \delta^{-1} (\delta [/mm] (1)) = 1
  ii) [mm] \delta^{-1} [/mm] (xy) = [mm] \delta^{-1} [/mm] (x) * [mm] \delta^{-1} [/mm] (y)
[mm] \gdw \delta (\delta^{-1} [/mm] (xy)) [mm] =\delta (\delta^{-1} [/mm] (x) * [mm] \delta^{-1} [/mm] (y))
[mm] \gdw [/mm] xy= xy

iii) [mm] \delta^{-1} [/mm] (x+y) = [mm] \delta^{-1} [/mm] (x) + [mm] \delta^{-1} [/mm] (y)
[mm] \gdw \delta (\delta^{-1} [/mm] (x+y) [mm] =\delta (\delta [/mm] (-1) (x) + [mm] \delta^{-1} [/mm] (y))
[mm] \gdw \delta(\delta^{-1} [/mm] (x+y) [mm] =\delta(\delta^{-1} (x))+\delta(\delta^{-1} [/mm] (y))
[mm] \gdw [/mm] xy= xy

Vielen dank im voraus!

        
Bezug
Ringhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Sa 16.04.2011
Autor: Lippel

Hallo,

> Seien R,S, T Ringe, f: R [mm]\to[/mm] S bzw. g: S [mm]\to[/mm] T
> Ringhomomorphismen und [mm]\delta[/mm] : [mm]R\to[/mm] S ein
> Ringhomomorphismus. Zeigen sie dass die folgenden
> Abbgildungen  ebenfalls Ringhomomorphismen sind:
>  a) id: R [mm]\to[/mm] R
>  b) [mm]\beta[/mm] := g [mm]\circ[/mm] f : R [mm]\to[/mm] T
>  c) [mm]\delta^{-1}[/mm] : S [mm]\to[/mm] R

Sicher, dass $ [mm] \delta$ [/mm] nicht ein Isomorphismus sein muss, sonst gilt die Aussage c) nämlich im allgemeinen nicht, da eine Umkehrabbildung gar nicht wohldefiniert ist.

>  
> bei uns wird jetzt stark auf  die Form geachtet, deswegen
> meine Frage, könnte jemand meine Antwort sowohl auf
> Richtigkeit als auch auf Form überprüfen ?
>
> also meine Antworten:
>  
> a) i)  id(1) = 1 , gilt denn eins geht auf eins
>     ii)  id (xy) = xy = id (x) id(y)
>     iii)   id (x+y) = x+y = id (x) + id (y)
>  
> Somit gilt, dass a) ein ringhomomorphismus ist

Vollkommen korrekt.

> b)  ???? vielleicht kann mir ja jemand einen Tipp geben.,,

Seien $x,y  [mm] \in [/mm] R$:
(i) [mm](g \circ f)(1) = g(f(1)) = g(1) = 1 [/mm]
(ii) $(g [mm] \circ [/mm] f)(xy)=g(f(xy)) = g(f(x)f(y))=g(f(x))g(f(y))=(g [mm] \circ [/mm] f)(x)(g [mm] \circ [/mm] f)(y)$
(iii) analog
Du verwendest also einfach die Homomorphismeneigenschaften von f und g.


> c)

Ich gehe jetzt mal davon aus, dass [mm] $\delta$ [/mm] Ringisomorphismus ist.

i)  [mm]\delta^{-1}[/mm] = [mm]\delta^{-1} (\delta[/mm] (1)) = 1
Genau.

>    ii) [mm]\delta^{-1}(1)[/mm] (xy) = [mm]\delta^{-1}[/mm] (x) * [mm]\delta^{-1}[/mm]
> (y)
>  [mm]\gdw \delta (\delta^{-1}[/mm] (xy)) [mm]=\delta (\delta^{-1}[/mm] (x) *
> [mm]\delta^{-1}[/mm] (y))
>  [mm]\gdw[/mm] xy= xy

Ja.
  

> iii) [mm]\delta^{-1}[/mm] (x+y) = [mm]\delta^{-1}[/mm] (x) + [mm]\delta^{-1}[/mm] (y)
>  [mm]\gdw \delta (\delta^{-1}[/mm] (x+y) [mm]=\delta (\delta[/mm] (-1) (x) +
> [mm]\delta^{-1}[/mm] (y))
>  [mm]\gdw \delta(\delta^{-1}[/mm] (x+y) [mm]=\delta(\delta^{-1} (x))+\delta(\delta^{-1}[/mm]
> (y))
> [mm]\gdw[/mm] xy= xy

In der letzten Zeile muss es natürlich $x+y=x+y$ heißen.

LG Lippel

Bezug
                
Bezug
Ringhomomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Sa 16.04.2011
Autor: julmarie

danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]