matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRing mit 6 Elementen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Ring mit 6 Elementen
Ring mit 6 Elementen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ring mit 6 Elementen: Idee
Status: (Frage) beantwortet Status 
Datum: 12:39 Sa 06.11.2004
Autor: Toyo

Hallo an alle, ich ein Problem unzwar soll ich zeigen,

dass es bis auf Isomorphie genau einen Ring [mm] R_{6} [/mm] (mit Einselement) mit 6 Elementen gibt.

Wie kann ich dass machen? Ich hab mir jetzt mal ne Gruppentafel für die Addition mit den Elementen 0,1,a,b,c,d aufgestellt und dann nochmal eine solche für die Multiplikation aber wie kann ich zeigen,dass es genau nur eine davon gibt und die Isomorphie quasie ausnehmen?
Danke euch schonmal im Vorraus.
Gruß Toyo

        
Bezug
Ring mit 6 Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 So 07.11.2004
Autor: Marc

Hallo Toyo,

> dass es bis auf Isomorphie genau einen Ring [mm]R_{6}[/mm] (mit
> Einselement) mit 6 Elementen gibt.
>
> Wie kann ich dass machen? Ich hab mir jetzt mal ne
> Gruppentafel für die Addition mit den Elementen 0,1,a,b,c,d
> aufgestellt und dann nochmal eine solche für die
> Multiplikation aber wie kann ich zeigen,dass es genau nur
> eine davon gibt und die Isomorphie quasie ausnehmen?

Beim Aufstellen der Gruppentafeln mußt du für jeden Eintrag argumentieren, dass du nur eine einzige Wahl hattest.

Dann wärst du auch schon fertig, denn dann gibt es bis auf einen Ring, der isomorph auf deinen Ring abgebildet werden kann, nur einen einzigen Ring.

Isomorph heißt eben: Die Elemente des Ringes können anders bezeichnet sein, die Verknüpfungsstruktur zwischen den Elementen ist aber eindeutig.

Wenn du magst, kannst du uns ja mal deine Verknüpfungstafeln vorstellen, inklusive der Begründungen für jedes Element.

Viele Grüße,
Marc

Bezug
                
Bezug
Ring mit 6 Elementen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:01 So 07.11.2004
Autor: Toyo

Hi, ich bins nochmal
also meine Additive Gruppentafel sieht wie folgt aus:
[mm] \pmat{ 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 & 0 \\ 2 & 3 & 4 & 5 & 0 & 1 \\ 3 & 4 & 5 &0 & 1 & 2 \\ 4 & 5 & 0 &1 & 2 & 3 \\ 5 & 0 & 1 & 2 & 3 & 4 } [/mm]

Ich konnte leider nicht zeigen,dass sie nur genauso aussehen kann, wenn
[mm] M={0,1,2,3,4,5) (M, + ) [/mm] abelsche Gruppe sein soll.

Weil ich 1+1=2 und 1+2=3 Setzen musste und bei diesen beiden Mehrere Möglichkeiten ein Ergebniss für diese Ausdrücke zu wählen.

Wie kann ich zeigen,dass es 1+1=2 sein muss und ich keine wahl hab?
geht das überhaupt?
Oder kann ich die Aufgabe vielleicht noch anders lösen?

Danke für eure Hilfe. Gruß Toyo


Bezug
                        
Bezug
Ring mit 6 Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Di 09.11.2004
Autor: spezies_64738

Genau das ist gemeint mit "bis auf Isomorphie"
Dabei ist es egal, ob du das Element 1+1 nun gerade 2 nennst, "a" oder vielleicht sogar 4. Wichtig daran ist nur, dass es ein zusätzliches Element ist, dass von 1 und 0 gerade verschieden ist.
Zu zeigen ist in dem Fall nur, dass nicht 1+1=1 oder 1+1=0 gelten kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]