matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann Lemma (2 Fragen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Riemann Lemma (2 Fragen)
Riemann Lemma (2 Fragen) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann Lemma (2 Fragen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Do 14.02.2008
Autor: abi2007LK

Hallo,

ich habe einige Fragen zu einem Beweis des Riemann Lemmas.

Hier ist es - samt Beweis so wie er mir vorliegt:

Für stetig differenzierbare Funktionen f:[a, b] [mm] \to \IR [/mm] gilt:

[mm] \limes_{R\rightarrow\infty}\integral_{a}^{b}{f(t) sin(Rt) dt} [/mm] = 0.

Hier der Beweis:

Mit partieller Integration folgt:
[mm] \integral_{a}^{b}{f(t) sin(Rt) dt} [/mm] = [mm] \frac{-f(t)cos(Rt)}{R} |^{t=b}_{t=a} [/mm] + [mm] \integral_{a}^{b}{\frac{f'(t)cos(Rt)}{R} dt} [/mm]

(*) Das ausintegrierte Integral geht gegen 0 für R gegen unendlich (a, b fest).

f' ist auf dem kompakten Intervall [a, b] stetig, also beschränkt, etwa |f'(t)| < M für alle t [mm] \in [/mm] [a, b].

(**) Damit kann das umgeformte Integral abgeschätzt werden durch:

[mm] \left| \integral_{a}^{b}{\frac{f'(t)cos(Rt)}{R}} \right| \le \frac{M|b-a|}{R} \to [/mm] 0 für R gegen unendlich.

qed.

Fein.

Meine erste Frage bezieht sich auf (*). Wieso geht das ausintegrierte Integral geht gegen 0 für R gegen unendlich? Weil f beschränkt und cos beschränkt sind - man sie also nach oben durch eine Konstante abschätzen kann und eine Konstante geteilt durch einen Faktor, der gegen unendlich geht Null ergibt?

Meine zweite Frage bezieht sich auf (**): Wieso gilt die Abschätzung? Mit der Abschätzung wird ja mehr oder weniger Behauptet, dass falls |f'(t)| < M ist dann auch die Fläche unter f'(t) < M ist. Es wird ja scheinbar cos(Rt) noch irgendwie abgeschätzt, sodass da noch irgendwie |b-a| in der Abschätzung auftaucht. Aber welcher Gedanke dahinter steckt ist mir noch unklar.

Übrigens: Wie macht man mit den Formeln hier im Forum den Strich bei [mm] |^{t=b}_{t=a} [/mm] etwas höher?


        
Bezug
Riemann Lemma (2 Fragen): Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Do 14.02.2008
Autor: abakus


> Hallo,
>  
> ich habe einige Fragen zu einem Beweis des Riemann Lemmas.
>  
> Hier ist es - samt Beweis so wie er mir vorliegt:
>  
> Für stetig differenzierbare Funktionen f:[a, b] [mm]\to \IR[/mm]
> gilt:
>  
> [mm]\limes_{R\rightarrow\infty}\integral_{a}^{b}{f(t) sin(Rt) dt}[/mm]
> = 0.
>  
> Hier der Beweis:
>  
> Mit partieller Integration folgt:
>  [mm]\integral_{a}^{b}{f(t) sin(Rt) dt}[/mm] =
> [mm]\frac{-f(t)cos(Rt)}{R} |^{t=b}_{t=a}[/mm] +
> [mm]\integral_{a}^{b}{\frac{f'(t)cos(Rt)}{R} dt}[/mm]
>  
> (*) Das ausintegrierte Integral geht gegen 0 für R gegen
> unendlich (a, b fest).
>  
> f' ist auf dem kompakten Intervall [a, b] stetig, also
> beschränkt, etwa |f'(t)| < M für alle t [mm]\in[/mm] [a, b].
>  
> (**) Damit kann das umgeformte Integral abgeschätzt werden
> durch:
>  
> [mm]\left| \integral_{a}^{b}{\frac{f'(t)cos(Rt)}{R}} \right| \le \frac{M|b-a|}{R} \to[/mm]
> 0 für R gegen unendlich.
>  
> qed.
>  
> Fein.
>
> Meine erste Frage bezieht sich auf (*). Wieso geht das
> ausintegrierte Integral geht gegen 0 für R gegen unendlich?
> Weil f beschränkt und cos beschränkt sind - man sie also
> nach oben durch eine Konstante abschätzen kann und eine
> Konstante geteilt durch einen Faktor, der gegen unendlich
> geht Null ergibt?
>  

Hallo,
so würde ich auch argumentieren.



> Meine zweite Frage bezieht sich auf (**): Wieso gilt die
> Abschätzung? Mit der Abschätzung wird ja mehr oder weniger
> Behauptet, dass falls |f'(t)| < M ist dann auch die Fläche
> unter f'(t) < M ist.

Nein. Die "Höhe" der Fläche unter f'(t) ist überall kleiner M.
Die Fläche liegt also innerhalb eines Rechtecks der Höhe M und der Breite |b-a|
(Intervallbreite) und ist damit kleiner als M*|b-a|.

Es wird ja scheinbar cos(Rt) noch

> irgendwie abgeschätzt,

Irgendwie ist gut.  Der Kosinus kann 1 nicht überschreiten.

Ich hoffe, das hilft erstmal. Bin auf dem Gebiet nicht so sicher in der Materie.
Viele Grüße
Abakus




> sodass da noch irgendwie |b-a| in
> der Abschätzung auftaucht. Aber welcher Gedanke dahinter
> steckt ist mir noch unklar.
>  
> Übrigens: Wie macht man mit den Formeln hier im Forum den
> Strich bei [mm]|^{t=b}_{t=a}[/mm] etwas höher?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]