matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRiemann Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Riemann Integral
Riemann Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann Integral: Beweis
Status: (Frage) beantwortet Status 
Datum: 13:08 Mo 06.06.2005
Autor: Deuterinomium

Ich habe diese Frage noch in keinem anderen Forum gestellt.

Hallo zusammen.

Ich habe seit Freitag versucht folgendes zu Lösen:

Seien  [mm] I := [0,1] , f : I \to \IR [/mm] beschränkt und [mm] g : \IR \to \IR [/mm] konvex sowie [mm] \mu_f [/mm] eine Flächeninhaltsfunktion für f über I . Zeigen Sie:

[mm] g(\mu_f (I)) \le \mu_[g \circ f] (I) [/mm]

falls g monoton wachsend oder f Riemann-integrierbar ist.

Und ferner: Beweisen sie, dass monotone Funktionen Riemann-integrierbar sind.

Hilfe, ich ahbe keine Ahnung und es wäre echt schon spitze wenn ich die Ansätze hätte!
Vielen Dank schon mal!


        
Bezug
Riemann Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mo 06.06.2005
Autor: banachella

Hallo!

Bitte poste in Zukunft nicht zwei Fragen in einen Strang!

Nun aber zur Frage, warum monotone Funktionen Riemann-integrierbar sind.
O.E. gehen wir davon aus, dass die Funktion $f:\ [mm] [a;b]\to\IR$ [/mm] monoton steigend ist.
Sei [mm] $\left(\xi_i^{(n)}\right)_{i=0,\dots, n}$ [/mm] eine Partition von $[a;b]$, wobei [mm] $\xi^{(n)}_i-\xi^{(n)}_{i-1}=\bruch{b-a}{n}=:\epsilon$ [/mm] für alle [mm] $i=1,\dots [/mm] n$.

Dann gilt für die Obersumme [mm] $S_n$: [/mm]
[mm] $S_n=\summe_{i=1}^n f(\xi^{(n)}_{i})\left(\xi^{(n)}_i-\xi^{(n)}_{i-1}\right)=\epsilon*\summe_{i=1}^nf(\xi^{(n)}_{i})$ [/mm]
und für die Untersumme [mm] $s_n$: [/mm]
[mm] $s_n=\summe_{i=1}^n f(\xi^{(n)}_{i-1})\left(\xi^{(n)}_i-\xi^{(n)}_{i-1}\right)=\epsilon*\summe_{i=1}^nf(\xi^{(n)}_{i-1})$ [/mm]
Damit ist [mm] $S_n-s_n=\epsilon\left(f(\xi^{(n)}_{n})-f(\xi^{(n)}_{0})\right)=(f(b)-f(a))\epsilon$. [/mm]
Insbesondere ist [mm] $s_n$ [/mm] monoton steigend und [mm] $S_n$ [/mm] monoton fallend. Also konvergieren beide gegen denselben Grenzwert.

Für die Frage mit der konvexen Funktion $g$: Zeige zunächst mal, dass für jede Partition [mm] $\big(\xi_i\big)$ [/mm] von $[0;1]$ und für [mm] $x_i\in\IR$ [/mm]  gilt, dass [mm] $g\left(\summe (\xi_i-\xi_{i-1})x_i\right)\le \summe (\xi_i-\xi_{i-1})g(x_i)$. [/mm] Das geht am besten über Induktion. Benutze dabei, dass [mm] $\summe (\xi_i-\xi_{i-1})=1$! [/mm]

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]