matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann-Summe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Riemann-Summe
Riemann-Summe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-Summe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:03 Mi 20.03.2013
Autor: piriyaie

Aufgabe
f:[-1, 2] [mm] \to \IR, [/mm] x [mm] \to e^{x}, \mu [/mm] = [mm] \bruch{1}{2} [/mm]

Hallo,

ich möchte für die obige Funktion die Riemann-Summe bilden mit der geforderten Feinheit [mm] \mu [/mm] = [mm] \bruch{1}{2} [/mm] . Hier mein Lösungsvorschlag:

Die Unterteilung:

a = -1 = [mm] x_{0} [/mm] < [mm] -\bruch{1}{2} [/mm] = [mm] x_{1} [/mm] < 0 = [mm] x_{2} [/mm] < [mm] \bruch{1}{2} [/mm] = [mm] x_{3} [/mm] < 1 = [mm] x_{4} [/mm] < [mm] \bruch{3}{2} [/mm] = [mm] x_{5} [/mm] < 2 = [mm] x_{6} [/mm]

Die Stützpunkte:

[mm] \delta_{1} [/mm] = [mm] -\bruch{1}{2}; \delta_{2} [/mm] = 0; [mm] \delta_{3} [/mm] = [mm] \bruch{1}{2}; \delta_{4} [/mm] = 1; [mm] \delta_{5} [/mm] = [mm] \bruch{3}{2}; \delta_{6} [/mm] = 2

Ich verwende diese Formel: [mm] \summe_{k=1}^{n} f(\delta_{k})(x_{k} [/mm] - [mm] x_{k-1}) [/mm]

[mm] \Rightarrow e^{-\bruch{1}{2}} (\bruch{1}{2}) [/mm] + [mm] e^{0} (\bruch{1}{2}) [/mm] + [mm] e^{\bruch{1}{2}} (\bruch{1}{2}) [/mm] + [mm] e^{1} (\bruch{1}{2}) [/mm] + [mm] e^{\bruch{3}{2}} (\bruch{1}{2}) [/mm] + [mm] e^{2} (\bruch{1}{2}) [/mm] = [mm] \bruch{1}{2} (e^{-\bruch{1}{2}}+ e^{0}+ e^{\bruch{1}{2}}+ e^{1}+ e^{\bruch{3}{2}}+ e^{2}) [/mm] = 8,922


Ist das richtig so????

Danke schonmal.

Grüße
Ali

        
Bezug
Riemann-Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 20.03.2013
Autor: leduart

Hallo
das ist eine richtige Riemannsche Obersumme. Ob ihr die ober oder Untersumme ausrechnen sollt geht aus der aufgabe nicht hervor.
Gruss leduart

Bezug
                
Bezug
Riemann-Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Mi 20.03.2013
Autor: piriyaie

Super :-D Vielen Dank.

Noch eine Frage:

Ist die Schreibweise so korrekt? Also ist es gut so, wenn ich des in den Übungen/Prüfung genauso hinschreibe?

Grüße
Ali

Bezug
                        
Bezug
Riemann-Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mi 20.03.2013
Autor: steppenhahn

Hallo,


> Noch eine Frage:
>  
> Ist die Schreibweise so korrekt? Also ist es gut so, wenn
> ich des in den Übungen/Prüfung genauso hinschreibe?

Ja, das sieht gut aus. Ich kann dir aus Erfahrung sagen, dass Korrekteure eine solche Abgabe schon sehr gut fänden :-)

Drei kleine Verbesserungsvorschläge:

-Schreibe hin, dass n = 6 ist.
-Schreibe zwischen dem [mm] $\sum_{k=1}^{n}f(\delta_k) \cdot (x_k [/mm] - [mm] x_{k-1})$ [/mm] und deiner weiteren Rechnung ein "=", kein " [mm] $\Rightarrow$ [/mm] ".
-Evtl. habt ihr in der Vorlesung eine Bezeichnung für die Obersumme / Untersumme eingeführt. Dann schreibe das noch vor das [mm] $\sum_{k=1}^{n}f(\delta_k) \cdot (x_k [/mm] - [mm] x_{k-1})$. [/mm] Es geht darum, das dem Korrekteur klar wird, dass dieser berechnete Term jetzt die Obersumme ist.


Viele Grüße,
Stefan

Bezug
                                
Bezug
Riemann-Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 Mi 20.03.2013
Autor: piriyaie

Alles klar. Vielen Vielen dank! :-D

Bezug
                                        
Bezug
Riemann-Summe: Ober-, Unter-, Riemannsumme
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Do 21.03.2013
Autor: Helbig

Hallo piriyaie,
in dieser Diskussionen werden die Begriffe Ober- und Untersumme einerseits und Riemannsumme andererseits nicht immer sauber getrennt.

Ober- und Untersummen werden benutzt, um das Riemannintegral zu definieren. Die Riemannsumme benutzte Riemann, um das Riemannintegral zu definieren. Allen drei Summen liegen Zerlegungen eines Intervalls in Teilintervalle [mm] $I_k\$ [/mm] der Länge [mm] $\Delta_k$ [/mm] zugrunde. Die Summanden sind aber unterschiedlich definiert:

Obersumme: [mm] $\sup \{f(x)\mid x\in I_k\} [/mm] * [mm] \Delta_k$ [/mm]
Untersumme: [mm] $\inf \{f(x)\mid x\in I_k\} [/mm] * [mm] \Delta_k$ [/mm]
Riemannsumme: [mm] $f(\xi_k)*\Delta_k$ [/mm]

Die Zerlegung alleine legt eine Ober- oder Untersumme fest, für eine Riemannsumme sind dagegen zusätzlich die Stützstellen [mm] $\xi_k\in I_k$ [/mm] anzugeben. Keine der Summen ist durch die Feinheit der Zerlegung festgelegt.

Grüße,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]